Business and Technology of the Global Polyethylene Industry
An In-Depth Look at the History, Technology, Catalysts, and Modern Commercial Manufacture of Polyethylene and Its Products
Business and Technology of the Global Polyethylene Industry
An In-Depth Look at the History, Technology, Catalysts, and Modern Commercial Manufacture of Polyethylene and Its Products
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The history of the business and technology that was responsible for the enormous growth of the global polyethylene industry from the laboratory discovery in 1933 to reach an annual production of over 75 million metric tons in 2012 and become the leading plastic material worldwide. This book is an in-depth look at the history of the scientists and engineers that created the catalysts and the methods used for the modern commercial manufacture of polyethylene and its products. The book outlines the processes used for the manufacture of polyethylene are reviewed which include the high-pressure…mehr
- Technology of Plastics Packaging for the Consumer Market202,99 €
- The Global Automotive Industry137,99 €
- John StarkGlobal Product74,99 €
- L.A. UtrackiCommercial Polymer Blends507,99 €
- John StarkGlobal Product89,99 €
- Russ J MartinelliProgram Management for Improved Business Results85,99 €
- Srichand Hinduja (ed.)Proceedings of the 34th International Matador Conference114,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 432
- Erscheinungstermin: 6. Oktober 2014
- Englisch
- Abmessung: 244mm x 164mm x 32mm
- Gewicht: 735g
- ISBN-13: 9781118945988
- ISBN-10: 1118945980
- Artikelnr.: 41025238
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 432
- Erscheinungstermin: 6. Oktober 2014
- Englisch
- Abmessung: 244mm x 164mm x 32mm
- Gewicht: 735g
- ISBN-13: 9781118945988
- ISBN-10: 1118945980
- Artikelnr.: 41025238
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
1. Global Polyethylene Business Overview 1
1.1 Introduction 1
1.2 The Business of Polyethylene 2
1.3 Cyclical Nature of the Polyethylene Business 2
1.4 Early History of Ethylene and Polyethylene Manufacturing 6
References 44
2. Titanium-Based Ziegler Catalysts for the Production of Polyethylene 47
2.1 Introduction 47
2.2 Titanium-Based Catalyst Developments 47
2.3 Titanium-Based Catalysts for the Manufacture of Polyethylene 52
2.4 Second Generation Ziegler Catalyst for the Manufacture of
Polyethylene 62
2.5 Catalysts Prepared on Silica 76
2.6 Characterization of Catalysts Prepared with Calcined Silica,
Dibutylmagnesium or Triethylaluminum and TiCl4 82
2.7 Kinetic Mechanism in the Multi-site Mg/Ti High-Activity Catalysts 96
References 104
Appendix 2.1 107
3. Chromium-Based Catalysts 109
3.1 Part I - The Phillips Catalyst 109
3.2 Part II - Chromium-Based Catalysts Developed by Union Carbide 126
3.3 Next Generation Chromium-Based Ethylene Polymerization Catalysts for
Commercial Operations 164
References 165
4. Single-Site Catalysts Based on Titanium or Zirconium for the Production
of Polyethylene 167
4.1 Overview of Single-Site Catalysts 167
4.2 Polyethylene Structure Attained with a Single-Site Catalyst 169
4.3 Historical Background 172
4.4 Single-Site Catalyst Based on (BuCp)2ZrCl2/MAO and Silica for the
Gas-Phase Manufacture of Polyethylene 193
4.5 Activation of the Metallocenes Cp2ZrCl2 or (BuCp)2ZrCl2 by Solid Acid
Supports 197
4.6 Dow Chemical Company Constrained Geometry Single-Site Catalysts
(CGC) 202
4.7 Novel Ethylene Copolymers Based on Single-Site Catalysts 205
4.8 Non-Metallocene Single-Site Catalysts 207
4.9 New Ethylene Copolymers Based on Single-Site Catalysts 211
4.10 Compatible Metallocene/Ziegler Catalyst System 215
4.11 Next Generation Catalysts 217
References 219
Appendix 4.I 222
5. Commercial Manufacture of Polyethylene 223
5.1 Introduction 223
5.2 Commercial Process Methods 226
5.3 Global Polyethylene Consumption 228
5.4 High-Pressure Polyethylene Manufacturing Process 229
5.5 Free-Radical Polymerization Mechanism for High-Pressure
Polyethylene 243
5.6 Organic Peroxides as Free-Radical Source for Initiation Process 246
5.7 Structure of High-Pressure LDPE 248
5.8 Low-Pressure Process 255
5.9 Gas-Phase Process 274
5.10 Gas-Phase Process Licensors 290
5.11 Solution Process 294
5.12 DuPont Sclair Process 295
5.13 Solution Process (2012) 298
References 300
6 Fabrication of Polyethylene 303
6.1 Introduction 303
6.2 Early History of Polyethylene Fabrication (1940-1953) 308
6.3 Stabilization of Polyethylene 310
6.4 Historical Overview of Some Common Polyethylene Additives 316
6.5 Examples of Additives Presently Used in the Polyethylene Industry
(2012) 318
6.6 Rheological Properties of Polyethylene 326
6.7 Fabrication of Film 327
6.8 Blown Film Extrusion 328
6.9 Fabrication of Polyethylene with Molding Methods 341
6.10 Rotational Molding 355
6.11 Thermoforming 357
References 359
7. Experimental Methods for Polyethylene Research Program 361
7.1 Introduction 361
7.2 Experimental Process 363
7.3 Important Considerations for Laboratory Slurry (Suspension)
Polymerization Reactors 368
7.4 Polymerization Reactor Design for High-Throughput Methods 391
7.5 Polymer Characterization 393
7.6 Process Models 393
References 394
1. Global Polyethylene Business Overview 1
1.1 Introduction 1
1.2 The Business of Polyethylene 2
1.3 Cyclical Nature of the Polyethylene Business 2
1.4 Early History of Ethylene and Polyethylene Manufacturing 6
References 44
2. Titanium-Based Ziegler Catalysts for the Production of Polyethylene 47
2.1 Introduction 47
2.2 Titanium-Based Catalyst Developments 47
2.3 Titanium-Based Catalysts for the Manufacture of Polyethylene 52
2.4 Second Generation Ziegler Catalyst for the Manufacture of
Polyethylene 62
2.5 Catalysts Prepared on Silica 76
2.6 Characterization of Catalysts Prepared with Calcined Silica,
Dibutylmagnesium or Triethylaluminum and TiCl4 82
2.7 Kinetic Mechanism in the Multi-site Mg/Ti High-Activity Catalysts 96
References 104
Appendix 2.1 107
3. Chromium-Based Catalysts 109
3.1 Part I - The Phillips Catalyst 109
3.2 Part II - Chromium-Based Catalysts Developed by Union Carbide 126
3.3 Next Generation Chromium-Based Ethylene Polymerization Catalysts for
Commercial Operations 164
References 165
4. Single-Site Catalysts Based on Titanium or Zirconium for the Production
of Polyethylene 167
4.1 Overview of Single-Site Catalysts 167
4.2 Polyethylene Structure Attained with a Single-Site Catalyst 169
4.3 Historical Background 172
4.4 Single-Site Catalyst Based on (BuCp)2ZrCl2/MAO and Silica for the
Gas-Phase Manufacture of Polyethylene 193
4.5 Activation of the Metallocenes Cp2ZrCl2 or (BuCp)2ZrCl2 by Solid Acid
Supports 197
4.6 Dow Chemical Company Constrained Geometry Single-Site Catalysts
(CGC) 202
4.7 Novel Ethylene Copolymers Based on Single-Site Catalysts 205
4.8 Non-Metallocene Single-Site Catalysts 207
4.9 New Ethylene Copolymers Based on Single-Site Catalysts 211
4.10 Compatible Metallocene/Ziegler Catalyst System 215
4.11 Next Generation Catalysts 217
References 219
Appendix 4.I 222
5. Commercial Manufacture of Polyethylene 223
5.1 Introduction 223
5.2 Commercial Process Methods 226
5.3 Global Polyethylene Consumption 228
5.4 High-Pressure Polyethylene Manufacturing Process 229
5.5 Free-Radical Polymerization Mechanism for High-Pressure
Polyethylene 243
5.6 Organic Peroxides as Free-Radical Source for Initiation Process 246
5.7 Structure of High-Pressure LDPE 248
5.8 Low-Pressure Process 255
5.9 Gas-Phase Process 274
5.10 Gas-Phase Process Licensors 290
5.11 Solution Process 294
5.12 DuPont Sclair Process 295
5.13 Solution Process (2012) 298
References 300
6 Fabrication of Polyethylene 303
6.1 Introduction 303
6.2 Early History of Polyethylene Fabrication (1940-1953) 308
6.3 Stabilization of Polyethylene 310
6.4 Historical Overview of Some Common Polyethylene Additives 316
6.5 Examples of Additives Presently Used in the Polyethylene Industry
(2012) 318
6.6 Rheological Properties of Polyethylene 326
6.7 Fabrication of Film 327
6.8 Blown Film Extrusion 328
6.9 Fabrication of Polyethylene with Molding Methods 341
6.10 Rotational Molding 355
6.11 Thermoforming 357
References 359
7. Experimental Methods for Polyethylene Research Program 361
7.1 Introduction 361
7.2 Experimental Process 363
7.3 Important Considerations for Laboratory Slurry (Suspension)
Polymerization Reactors 368
7.4 Polymerization Reactor Design for High-Throughput Methods 391
7.5 Polymer Characterization 393
7.6 Process Models 393
References 394