The link between Calculus of Variations and Partial Differential Equations has always been strong, because variational problems produce, via their Euler-Lagrange equation, a differential equation and, conversely, a differential equation can often be studied by variational methods. At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on a classical topic (the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to pde's resp.), in a self-contained presentation accessible to PhD students, bridging the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and nicely illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
"Fazit: Dies ist kein typischer Proccedingsband, sondern stellt - insbesondere wegen der Lecture Notes von Dancer und vor allem wegen der von Ambrosio - ... eine wichtige Bereicherung der anspruchsvollen Forschungsliteratur auf den Gebieten Variationsrechnung und partielle Differentialgleichungen dar. Es ist erfreulich, dass hier allerneueste Forschungsergebnisse so schnell Eingang - abgesehen von Zeitschriften - in die Literatur gefunden haben. Für Interessierte eine lohnenswerte Anschaffung!" Jahresbericht der DMV, 104. Band, Heft 2, August 2002