Andrew Russell Forsyth
Calculus of Variations
Andrew Russell Forsyth
Calculus of Variations
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This 1927 book constitutes Scottish mathematician Andrew Russell Forsyth's attempt at a systematic exposition of the calculus of variations.
Andere Kunden interessierten sich auch für
- Mariano GiaquintaMultiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems95,99 €
- Lev ElsgoltsDifferential Equations and the Calculus of Variations25,99 €
- Mariano GiaquintaCalculus of Variations II108,99 €
- Bernard DacorognaDirect Methods in the Calculus of Variations227,99 €
- Bruce Van BruntThe Calculus of Variations114,99 €
- Kuro AksaraThe Calculus of Variations and Optimal Control Theory78,99 €
- Thomas G. HallA Treatise On The Differential And Integral Calculus, And The Calculus Of Variations37,99 €
-
-
-
This 1927 book constitutes Scottish mathematician Andrew Russell Forsyth's attempt at a systematic exposition of the calculus of variations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 680
- Erscheinungstermin: 3. April 2012
- Englisch
- Abmessung: 244mm x 170mm x 36mm
- Gewicht: 1153g
- ISBN-13: 9781107640832
- ISBN-10: 1107640830
- Artikelnr.: 35893165
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 680
- Erscheinungstermin: 3. April 2012
- Englisch
- Abmessung: 244mm x 170mm x 36mm
- Gewicht: 1153g
- ISBN-13: 9781107640832
- ISBN-10: 1107640830
- Artikelnr.: 35893165
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Introduction; 1. Integrals of the first order: maxima and minima for
special weak variations: Euler test, Legendre test, Jacobi test; 2.
Integrals of the first order: general weak variations: the method of
Weierstrass; 3. Integrals involving derivatives of the second order:
special weak variations, by the method of Jacobi; general weak variations,
by the method of Weierstrass; 4. Integrals involving two dependent
variables and their first derivatives: special weak variations; 5.
Integrals involving two dependent variables and their first derivatives:
general weak variations; 6. Integrals with two dependent variables and
derivatives of the second order: mainly special weak variations; 7.
Ordinary integrals under strong variations, and the Weierstrass test: solid
of least resistance: action; 8. Relative maxima and minima of single
integrals: isoperimetrical problems; 9. Double integrals with derivatives
of the first order: weak variations: minimal surfaces; 10. Strong
variations and the Weierstrass test, for double integrals involving first
derivatives: isoperimetrical problems; 11. Double integrals, with
derivatives of the second order: weak variations; 12. Triple integrals with
first derivatives; Index.
special weak variations: Euler test, Legendre test, Jacobi test; 2.
Integrals of the first order: general weak variations: the method of
Weierstrass; 3. Integrals involving derivatives of the second order:
special weak variations, by the method of Jacobi; general weak variations,
by the method of Weierstrass; 4. Integrals involving two dependent
variables and their first derivatives: special weak variations; 5.
Integrals involving two dependent variables and their first derivatives:
general weak variations; 6. Integrals with two dependent variables and
derivatives of the second order: mainly special weak variations; 7.
Ordinary integrals under strong variations, and the Weierstrass test: solid
of least resistance: action; 8. Relative maxima and minima of single
integrals: isoperimetrical problems; 9. Double integrals with derivatives
of the first order: weak variations: minimal surfaces; 10. Strong
variations and the Weierstrass test, for double integrals involving first
derivatives: isoperimetrical problems; 11. Double integrals, with
derivatives of the second order: weak variations; 12. Triple integrals with
first derivatives; Index.
Introduction; 1. Integrals of the first order: maxima and minima for
special weak variations: Euler test, Legendre test, Jacobi test; 2.
Integrals of the first order: general weak variations: the method of
Weierstrass; 3. Integrals involving derivatives of the second order:
special weak variations, by the method of Jacobi; general weak variations,
by the method of Weierstrass; 4. Integrals involving two dependent
variables and their first derivatives: special weak variations; 5.
Integrals involving two dependent variables and their first derivatives:
general weak variations; 6. Integrals with two dependent variables and
derivatives of the second order: mainly special weak variations; 7.
Ordinary integrals under strong variations, and the Weierstrass test: solid
of least resistance: action; 8. Relative maxima and minima of single
integrals: isoperimetrical problems; 9. Double integrals with derivatives
of the first order: weak variations: minimal surfaces; 10. Strong
variations and the Weierstrass test, for double integrals involving first
derivatives: isoperimetrical problems; 11. Double integrals, with
derivatives of the second order: weak variations; 12. Triple integrals with
first derivatives; Index.
special weak variations: Euler test, Legendre test, Jacobi test; 2.
Integrals of the first order: general weak variations: the method of
Weierstrass; 3. Integrals involving derivatives of the second order:
special weak variations, by the method of Jacobi; general weak variations,
by the method of Weierstrass; 4. Integrals involving two dependent
variables and their first derivatives: special weak variations; 5.
Integrals involving two dependent variables and their first derivatives:
general weak variations; 6. Integrals with two dependent variables and
derivatives of the second order: mainly special weak variations; 7.
Ordinary integrals under strong variations, and the Weierstrass test: solid
of least resistance: action; 8. Relative maxima and minima of single
integrals: isoperimetrical problems; 9. Double integrals with derivatives
of the first order: weak variations: minimal surfaces; 10. Strong
variations and the Weierstrass test, for double integrals involving first
derivatives: isoperimetrical problems; 11. Double integrals, with
derivatives of the second order: weak variations; 12. Triple integrals with
first derivatives; Index.