- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Andere Kunden interessierten sich auch für
- Simon FarrellComputational Modeling of Cognition and Behavior143,99 €
- Sebastian A. WagnerThe Extent to which ¿Consciousness¿ poses a problem for the Computational Theory of Mind15,95 €
- Joan Y. ChiaoComputational Cultural Neuroscience195,99 €
- Thomas R. ShultzComputational Developmental Psychology49,99 €
- Computational Social Psychology216,99 €
- Patricia MartinkováComputational Aspects of Psychometric Methods227,99 €
- Computational Modeling for Industrial-Organizational Psychologists194,99 €
-
-
-
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 766
- Erscheinungstermin: 1. November 2017
- Englisch
- Abmessung: 254mm x 178mm x 41mm
- Gewicht: 1413g
- ISBN-13: 9780521674102
- ISBN-10: 0521674107
- Artikelnr.: 23541689
- Verlag: Cambridge University Press
- Seitenzahl: 766
- Erscheinungstermin: 1. November 2017
- Englisch
- Abmessung: 254mm x 178mm x 41mm
- Gewicht: 1413g
- ISBN-13: 9780521674102
- ISBN-10: 0521674107
- Artikelnr.: 23541689
Dr. Ron Sun is Professor of Cognitive Science at Rensselaer Polytechnic Institute. A well-known researcher in the field of cognitive science, Sun explores the fundamental structure of the human mind and aims for the synthesis of many interesting intellectual ideas into one coherent model of cognition. The goal is to form a generic cognitive architecture that captures a variety of cognitive processes in a unified way and thus to provide unified explanations for a wide range of cognitive data. To do so, for the past two decades, he has been advocating the use of hybrid connectionist-symbolic systems in developing cognitive models and he has been developing theories of human skill learning and human everyday reasoning as the centerpieces of the cognitive architecture.
Part I. Introduction: 1. Introduction to computational cognitive modeling
Ron Sun; Part II. Cognitive Modeling Paradigms: 2. Connectionist models of
cognition Michael Thomas and James McClelland; 3. Bayesian models of
cognition Thomas Griffiths, Charles Kemp, and Joshua Tenenbaum; 4.
Dynamical systems approaches to cognition Gregor Schoener; 5. Declarative/
logic-based computational cognitive modeling Selmer Bringsjord; 6.
Constraints in cognitive architectures Niels Taatgen and John Anderson;
Part III. Computational Modeling of Various Cognitive Functionalities and
Domains: 7. Computational models of episodic memory Kenneth Norman, Greg
Detre, and Sean Polyn; 8. Computational models of semantic memory Timothy
Rogers; 9. Models of categorization John Kruschke; 10. Micro-process models
of decision making Jerome Busemeyer and Joseph Johnson; 11. Models of
inductive reasoning Evan Heit; 12. Mental logic, mental models, and
simulations of human deductive reasoning Philip Johnson-Laird and Yingrui
Yang; 13. Computational models of skill acquisition Stellan Ohlsson; 14.
Computational models of implicit learning Axel Cleeremans and Zoltan
Dienes; 15. Computational models of attention and cognitive control Nicola
De Pisapia, Grega Repov and Todd Braver; 16. Computational models of
developmental psychology Thomas Shultz and Sylvain Sirois; 17.
Computational models of psycholinguistics Nick Chater and Morten
Christiansen; 18. Computational models in personality and social psychology
Stephen Read and Brian Monroe; 19. Cognitive social simulation Ron Sun; 20.
Models of scientific explanation Paul Thagard and Abninder Litt; 21.
Cognitive modeling for cognitive engineering Wayne Gray; 22. Models of
animal learning and their relations to human learning Francisco Lopez and
David Shanks; 23. Computational modeling of visual information processing
Pawan Sinha and Benjamin Balas; 24. Models of motor control Ferdinando
Mussa-Ivaldi and Sara Solla; Part IV. Concluding Remarks: 25. An evaluation
of computational modeling in cognitive science Margaret Boden; 26. Putting
the pieces together again Aaron Sloman.
Ron Sun; Part II. Cognitive Modeling Paradigms: 2. Connectionist models of
cognition Michael Thomas and James McClelland; 3. Bayesian models of
cognition Thomas Griffiths, Charles Kemp, and Joshua Tenenbaum; 4.
Dynamical systems approaches to cognition Gregor Schoener; 5. Declarative/
logic-based computational cognitive modeling Selmer Bringsjord; 6.
Constraints in cognitive architectures Niels Taatgen and John Anderson;
Part III. Computational Modeling of Various Cognitive Functionalities and
Domains: 7. Computational models of episodic memory Kenneth Norman, Greg
Detre, and Sean Polyn; 8. Computational models of semantic memory Timothy
Rogers; 9. Models of categorization John Kruschke; 10. Micro-process models
of decision making Jerome Busemeyer and Joseph Johnson; 11. Models of
inductive reasoning Evan Heit; 12. Mental logic, mental models, and
simulations of human deductive reasoning Philip Johnson-Laird and Yingrui
Yang; 13. Computational models of skill acquisition Stellan Ohlsson; 14.
Computational models of implicit learning Axel Cleeremans and Zoltan
Dienes; 15. Computational models of attention and cognitive control Nicola
De Pisapia, Grega Repov and Todd Braver; 16. Computational models of
developmental psychology Thomas Shultz and Sylvain Sirois; 17.
Computational models of psycholinguistics Nick Chater and Morten
Christiansen; 18. Computational models in personality and social psychology
Stephen Read and Brian Monroe; 19. Cognitive social simulation Ron Sun; 20.
Models of scientific explanation Paul Thagard and Abninder Litt; 21.
Cognitive modeling for cognitive engineering Wayne Gray; 22. Models of
animal learning and their relations to human learning Francisco Lopez and
David Shanks; 23. Computational modeling of visual information processing
Pawan Sinha and Benjamin Balas; 24. Models of motor control Ferdinando
Mussa-Ivaldi and Sara Solla; Part IV. Concluding Remarks: 25. An evaluation
of computational modeling in cognitive science Margaret Boden; 26. Putting
the pieces together again Aaron Sloman.
Part I. Introduction: 1. Introduction to computational cognitive modeling
Ron Sun; Part II. Cognitive Modeling Paradigms: 2. Connectionist models of
cognition Michael Thomas and James McClelland; 3. Bayesian models of
cognition Thomas Griffiths, Charles Kemp, and Joshua Tenenbaum; 4.
Dynamical systems approaches to cognition Gregor Schoener; 5. Declarative/
logic-based computational cognitive modeling Selmer Bringsjord; 6.
Constraints in cognitive architectures Niels Taatgen and John Anderson;
Part III. Computational Modeling of Various Cognitive Functionalities and
Domains: 7. Computational models of episodic memory Kenneth Norman, Greg
Detre, and Sean Polyn; 8. Computational models of semantic memory Timothy
Rogers; 9. Models of categorization John Kruschke; 10. Micro-process models
of decision making Jerome Busemeyer and Joseph Johnson; 11. Models of
inductive reasoning Evan Heit; 12. Mental logic, mental models, and
simulations of human deductive reasoning Philip Johnson-Laird and Yingrui
Yang; 13. Computational models of skill acquisition Stellan Ohlsson; 14.
Computational models of implicit learning Axel Cleeremans and Zoltan
Dienes; 15. Computational models of attention and cognitive control Nicola
De Pisapia, Grega Repov and Todd Braver; 16. Computational models of
developmental psychology Thomas Shultz and Sylvain Sirois; 17.
Computational models of psycholinguistics Nick Chater and Morten
Christiansen; 18. Computational models in personality and social psychology
Stephen Read and Brian Monroe; 19. Cognitive social simulation Ron Sun; 20.
Models of scientific explanation Paul Thagard and Abninder Litt; 21.
Cognitive modeling for cognitive engineering Wayne Gray; 22. Models of
animal learning and their relations to human learning Francisco Lopez and
David Shanks; 23. Computational modeling of visual information processing
Pawan Sinha and Benjamin Balas; 24. Models of motor control Ferdinando
Mussa-Ivaldi and Sara Solla; Part IV. Concluding Remarks: 25. An evaluation
of computational modeling in cognitive science Margaret Boden; 26. Putting
the pieces together again Aaron Sloman.
Ron Sun; Part II. Cognitive Modeling Paradigms: 2. Connectionist models of
cognition Michael Thomas and James McClelland; 3. Bayesian models of
cognition Thomas Griffiths, Charles Kemp, and Joshua Tenenbaum; 4.
Dynamical systems approaches to cognition Gregor Schoener; 5. Declarative/
logic-based computational cognitive modeling Selmer Bringsjord; 6.
Constraints in cognitive architectures Niels Taatgen and John Anderson;
Part III. Computational Modeling of Various Cognitive Functionalities and
Domains: 7. Computational models of episodic memory Kenneth Norman, Greg
Detre, and Sean Polyn; 8. Computational models of semantic memory Timothy
Rogers; 9. Models of categorization John Kruschke; 10. Micro-process models
of decision making Jerome Busemeyer and Joseph Johnson; 11. Models of
inductive reasoning Evan Heit; 12. Mental logic, mental models, and
simulations of human deductive reasoning Philip Johnson-Laird and Yingrui
Yang; 13. Computational models of skill acquisition Stellan Ohlsson; 14.
Computational models of implicit learning Axel Cleeremans and Zoltan
Dienes; 15. Computational models of attention and cognitive control Nicola
De Pisapia, Grega Repov and Todd Braver; 16. Computational models of
developmental psychology Thomas Shultz and Sylvain Sirois; 17.
Computational models of psycholinguistics Nick Chater and Morten
Christiansen; 18. Computational models in personality and social psychology
Stephen Read and Brian Monroe; 19. Cognitive social simulation Ron Sun; 20.
Models of scientific explanation Paul Thagard and Abninder Litt; 21.
Cognitive modeling for cognitive engineering Wayne Gray; 22. Models of
animal learning and their relations to human learning Francisco Lopez and
David Shanks; 23. Computational modeling of visual information processing
Pawan Sinha and Benjamin Balas; 24. Models of motor control Ferdinando
Mussa-Ivaldi and Sara Solla; Part IV. Concluding Remarks: 25. An evaluation
of computational modeling in cognitive science Margaret Boden; 26. Putting
the pieces together again Aaron Sloman.