39,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

The rising concentration of carbon dioxide in the atmosphere is driving up ocean surface temperatures and causing ocean acidification. Although warming and acidification are different phenomena, they interact to the detriment of marine ecosystems. These changes to the ocean aren't occurring at the same rates everywhere: there are significant differences across gradients of temperature, latitude, and depth.The rate at which water absorbs CO2 decreases as water temperature increases. This means that Polar Regions like Alaska, where ocean water is relatively cold, can take up more CO2 than the…mehr

Produktbeschreibung
The rising concentration of carbon dioxide in the atmosphere is driving up ocean surface temperatures and causing ocean acidification. Although warming and acidification are different phenomena, they interact to the detriment of marine ecosystems. These changes to the ocean aren't occurring at the same rates everywhere: there are significant differences across gradients of temperature, latitude, and depth.The rate at which water absorbs CO2 decreases as water temperature increases. This means that Polar Regions like Alaska, where ocean water is relatively cold, can take up more CO2 than the warmer tropics. As a result, polar surface waters are generally acidifying faster than those in other latitudes, and on average, warmer regions of the ocean are releasing CO2 into the atmosphere instead of absorbing it.The regional differences in ocean acidification can also be partially explained by the effects of ocean circulation patterns. Due to prevailing wind patterns and other natural phenomena, the ocean upwells nutrient-rich and more acidic or corrosive deep waters.
Autorenporträt
Pourya Zarshenas é autora de mais de 190 artigos científicos e 85 livros científicos e vencedora de 21 prémios internacionais.