Categorical Decomposition Techniques in Algebraic Topology
International Conference in Algebraic Topology, Isle of Skye, Scotland, June 2001 Herausgegeben:Arone, Gregory; Hubbuck, John; Levi, Ran; Weiss, Michael
Categorical Decomposition Techniques in Algebraic Topology
International Conference in Algebraic Topology, Isle of Skye, Scotland, June 2001 Herausgegeben:Arone, Gregory; Hubbuck, John; Levi, Ran; Weiss, Michael
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms".
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms".
Michael Weiss - nach dem Studium Maschinenbau-Wirtschaftsingenieurwesen tätig in verschiedenen Führungspositionen in der Automobil- und Investitionsgüterindustrie sowie in Dienstleistungsunternehmen und immer mit der Herausforderung konfrontiert, Menschen mit ihren Bedürfnissen zu führen. Heute tätig als Unternehmensberater, Trainer und persönlicher Coach.
Inhaltsangabe
The functor T and the cohomology of mapping spaces.- On Morava K-theories of an S-arithmetic Group.- Ext groups for the composition of functors.- Homotopy operations and rational homotopy type.- The loop homology algebra of spheres and projective spaces.- On braid groups, free groups, and the loop space Of the 2-sphere.- The K-completion of E6.- The Homotopy of L2V(1) for the Prime 3.- Spherical Space Forms - Homotopy Types and Self-Equivalences.- The Homotopy Type of Two-Regular K-Theory.- Strict model structures for pro-categories.- L-s categories of simply-connected compact simple lie groups Of low rank.- The mccord model for the tensor product of a space And a commutative ring spectrum.- Spaces of multiplicative maps between Highly structured ring spectra.- Colimits, stanley-reisner algebras, and loop spaces.- Maps to spaces in the genus of infinite quaternionic Projective space.
The functor T and the cohomology of mapping spaces.- On Morava K-theories of an S-arithmetic Group.- Ext groups for the composition of functors.- Homotopy operations and rational homotopy type.- The loop homology algebra of spheres and projective spaces.- On braid groups, free groups, and the loop space Of the 2-sphere.- The K-completion of E6.- The Homotopy of L2V(1) for the Prime 3.- Spherical Space Forms - Homotopy Types and Self-Equivalences.- The Homotopy Type of Two-Regular K-Theory.- Strict model structures for pro-categories.- L-s categories of simply-connected compact simple lie groups Of low rank.- The mccord model for the tensor product of a space And a commutative ring spectrum.- Spaces of multiplicative maps between Highly structured ring spectra.- Colimits, stanley-reisner algebras, and loop spaces.- Maps to spaces in the genus of infinite quaternionic Projective space.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497