n mathematics, a Cauchy sequence, named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. To be more precise, by dropping enough (but still only a finite number of) terms from the start of the sequence, it is possible to make the maximum of the distances from any of the remaining elements to any other such element smaller than any preassigned, necessarily positive, value. In other words, suppose a pre-assigned positive real value is chosen. However small is, starting from a Cauchy sequence and eliminating terms one by one from the start, after a finite number of steps, any pair chosen from the remaining terms will be within distance of each other.