The past decade has witnessed the development of a wide range of nanomaterials using cavitation. While a few currently available books deal with the fundamental aspects of cavitation and sonochemistry, there is no book devoted specifically to the technologically important nanomaterials obtained by cavitation. This was the stimulus behind the development of this book. Leading researchers working on utilizing cavitation for the generation of nanomaterials have made their contributions to this book.
The past decade has witnessed the development of a wide range of nanomaterials using cavitation. While a few currently available books deal with the fundamental aspects of cavitation and sonochemistry, there is no book devoted specifically to the technologically important nanomaterials obtained by cavitation. This was the stimulus behind the development of this book. Leading researchers working on utilizing cavitation for the generation of nanomaterials have made their contributions to this book.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Sivakumar Manickam is a professor at the Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia Campus. He specializes in process engineering of nanomaterials, especially nanopharmaceuticals, and has worked in the area of ultrasound and hydrodynamic cavitation since 1997. He also heads the Manufacturing and Industrial Processes Research Division and is the coordinator of the Centre for Nanotechnology and Advanced Materials. Prof. Manickam is also the recipient of the JSPS fellowship, Japan; the Fellow of Higher Education Academy, UK; and member of the Institute of Nanotechnology (IoN), UK. His research group focuses on the process development of cavitation-based reactors toward technologically important nanomaterials. Muthupandian Ashokkumar is a professor at the School of Chemistry, University of Melbourne, Australia. He is a physical chemist who specializes in sonochemistry. He has developed a number of novel techniques to characterize acoustic cavitation bubbles and has made major contributions of applied sonochemistry to the food and dairy industry. Prof. Ashokkumar's recent research involves the ultrasonic synthesis of functional nano- and biomaterials, including protein microspheres that can be used in diagnostic and therapeutic medicine. He is a Fellow of the Royal Australian Chemical Institute and recipient of the Grimwade Prize in Industrial Chemistry.
Inhaltsangabe
Development of Multifunctional Nanomaterials by Cavitation. Generation of Size-, Structure-, and Shape-Controlled Metal Nanoparticles Using Cavitation. Sonochemical Synthesis of Noble Mono- and Bimetallic Nanoparticles for Catalytic Applications. Ultrasound-Assisted Synthesis of Metal Oxide Nanomaterials. Synthesis of Nanomaterials Using Hydrodynamic Cavitation. Sonoelectrochemical Synthesis of Nanomaterials. Preparation of Nanomaterials Under Combined Ultrasound/Microwave Irradiation. Ultrasound-Assisted Preparation of Nano- and Micro-Polymeric Materials for the Encapsulation of Bioactive Agents. Innovative Inorganic Nanoparticles with Antimicrobial Properties Attached to Textiles by Sonochemistry. Ultrasonic Processing for Synthesis of Nanocomposite via in situ Emulsion Polymerization and Their Applications. Controlled Sonochemical Fabrication of Mesoporous Surfaces and Metal Sponges. Numerical Simulations of Nucleation and Aggregation of BaTiO3 Nanocrystals Under Ultrasound. Ultrasonics and Sonochemistry: Some Issues and Future Perspectives.
Development of Multifunctional Nanomaterials by Cavitation. Generation of Size-, Structure-, and Shape-Controlled Metal Nanoparticles Using Cavitation. Sonochemical Synthesis of Noble Mono- and Bimetallic Nanoparticles for Catalytic Applications. Ultrasound-Assisted Synthesis of Metal Oxide Nanomaterials. Synthesis of Nanomaterials Using Hydrodynamic Cavitation. Sonoelectrochemical Synthesis of Nanomaterials. Preparation of Nanomaterials Under Combined Ultrasound/Microwave Irradiation. Ultrasound-Assisted Preparation of Nano- and Micro-Polymeric Materials for the Encapsulation of Bioactive Agents. Innovative Inorganic Nanoparticles with Antimicrobial Properties Attached to Textiles by Sonochemistry. Ultrasonic Processing for Synthesis of Nanocomposite via in situ Emulsion Polymerization and Their Applications. Controlled Sonochemical Fabrication of Mesoporous Surfaces and Metal Sponges. Numerical Simulations of Nucleation and Aggregation of BaTiO3 Nanocrystals Under Ultrasound. Ultrasonics and Sonochemistry: Some Issues and Future Perspectives.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826