This book provides a broad overview of how mechanical forces and properties govern diverse aspects of physiological and pathological processes. It also covers new emerging techniques developed to study complex biosystems such as microfluidics, traction force microscopy, and the development of novel biomaterials for tissue engineering. Importantly, chapters in this book are not limited to applications in animal cell biology, but also cover important dimensions in other kingdoms such as plants and bacteria.
This book provides a broad overview of how mechanical forces and properties govern diverse aspects of physiological and pathological processes. It also covers new emerging techniques developed to study complex biosystems such as microfluidics, traction force microscopy, and the development of novel biomaterials for tissue engineering. Importantly, chapters in this book are not limited to applications in animal cell biology, but also cover important dimensions in other kingdoms such as plants and bacteria.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Charles M. Cuerrier received a PhD in pharmacology at the Université de Sherbrooke, Canada. He is currently a postdoctoral fellow at the Center for Interdisciplinary Nanophysics, University of Ottawa, Canada, in collaboration with the University of Ottawa Heart Institute. He is the recipient of a postdoctoral fellowship from the Fonds de Recherche du Québec-Santé and of the Ernest and Margaret Ford Research Fellowship in Cardiology. Andrew E. Pelling received a PhD in physical chemistry at the University of California, Los Angeles, USA, and did his postdoctoral research as a senior research fellow at the London Centre for Nanotechnology, University College London, England. He is currently an associate professor and Canada Research Chair in Experimental Cell Mechanics at the University of Ottawa, Canada. He leads the Pelling Lab for Biophysical Manipulation at the Center for Interdisciplinary Nanophysics, University of Ottawa.
Inhaltsangabe
Micromechanical Cues Converging on Fibroblasts, Cardiac Myocytes and Stem Cells. How Microbes Sense and Respond to Force: a Single-Molecule View. Modulating Cell Adhesion by Non-Covalent Ligand Attachment. Traction Microscopy. The Mechanical Regulation of Myofibroblasts. Mechanically Guided Matrix Remodeling and Prevention of Fibrosis in Regenerative Medicine. Interstitial Fluid Flow Mechanosensing: Mechanisms and Consequences. Mechanical Properties of Cytoskeletal Structures and their Response to Externally Applied Forces. Shape and Mechanical Cues Underlying Cellular Homeostasis in Soft Organs. Muscle Contraction and Sarcomere Length Non-Uniformities. Microfluidic Modeling of Cancer Metastasis. Engineering Strategies to Recapitulate the Tumor Microenvironment. Micropost Methods for Cell Biomechanics of the Cardiovascular System. Dynamic Mechanical Environments to Quantify and Control Cellular Dynamics. Tip Growth in Walled Cells: Cellular Expansion and Invasion Mechanisms. Expansive Growth of Cells with Walls: Force Generation and Growth Regulation.
Micromechanical Cues Converging on Fibroblasts, Cardiac Myocytes and Stem Cells. How Microbes Sense and Respond to Force: a Single-Molecule View. Modulating Cell Adhesion by Non-Covalent Ligand Attachment. Traction Microscopy. The Mechanical Regulation of Myofibroblasts. Mechanically Guided Matrix Remodeling and Prevention of Fibrosis in Regenerative Medicine. Interstitial Fluid Flow Mechanosensing: Mechanisms and Consequences. Mechanical Properties of Cytoskeletal Structures and their Response to Externally Applied Forces. Shape and Mechanical Cues Underlying Cellular Homeostasis in Soft Organs. Muscle Contraction and Sarcomere Length Non-Uniformities. Microfluidic Modeling of Cancer Metastasis. Engineering Strategies to Recapitulate the Tumor Microenvironment. Micropost Methods for Cell Biomechanics of the Cardiovascular System. Dynamic Mechanical Environments to Quantify and Control Cellular Dynamics. Tip Growth in Walled Cells: Cellular Expansion and Invasion Mechanisms. Expansive Growth of Cells with Walls: Force Generation and Growth Regulation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497