Cellulose Science and Technology
Chemistry, Analysis, and Applications
Herausgegeben:Rosenau, Thomas; Potthast, Antje; Hell, Johannes
Cellulose Science and Technology
Chemistry, Analysis, and Applications
Herausgegeben:Rosenau, Thomas; Potthast, Antje; Hell, Johannes
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science.
_ Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners _ Deals with a highly applicable and timely topic, considering the current activities in the fields of…mehr
Andere Kunden interessierten sich auch für
- High-Performance Materials from Bio-Based Feedstocks203,99 €
- Bio-Based Packaging237,99 €
- Li ZhangUntethered Miniature Soft Robots95,99 €
- Mechanical and Dynamic Properties of Biocomposites111,99 €
- Natural Fiber-Reinforced Composites162,00 €
- Martin BajusConverting Power Into Chemicals and Fuels214,99 €
- Handbook of Bioplastics and Biocomposites Engineering Applications273,99 €
-
-
-
This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science.
_ Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners
_ Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization
_ Maximizes readership by combining fundamental science and application development
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
_ Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners
_ Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization
_ Maximizes readership by combining fundamental science and application development
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119217580
- 1. Auflage
- Seitenzahl: 480
- Erscheinungstermin: 27. Dezember 2018
- Englisch
- Abmessung: 235mm x 157mm x 31mm
- Gewicht: 867g
- ISBN-13: 9781119217589
- ISBN-10: 111921758X
- Artikelnr.: 45637122
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119217580
- 1. Auflage
- Seitenzahl: 480
- Erscheinungstermin: 27. Dezember 2018
- Englisch
- Abmessung: 235mm x 157mm x 31mm
- Gewicht: 867g
- ISBN-13: 9781119217589
- ISBN-10: 111921758X
- Artikelnr.: 45637122
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Thomas Rosenau, PhD, is a professor at BOKU University Vienna, holding the Chair of Wood, Pulp and Fiber Chemistry and heading both the Division of Chemistry of Renewable Resources and the Austrian Biorefinery Center Tulln. Antje Potthast, PhD, is a professor in the Department of Chemistry and is the deputy head of both the Division of Chemistry of Renewable Resources and the Austrian Biorefinery Center Tulln. Johannes Hell, PhD, is a technical manager at a Viennese chocolate factory.
Author Biography xv
List of Contributors xvii
Preface xxiii
Acknowledgements xxv
1 Aminocelluloses - Polymers with Fascinating Properties and Application Potential 1
Thomas Heinze, Thomas Elschner, and Kristin Ganske
1.1 Introduction 1
1.2 Amino-/ammonium Group Containing Cellulose Esters 2
1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2
1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7
1.3 6-Deoxy-6-amino Cellulose Derivatives 9
1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10
1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13
1.4 Amino Cellulose Carbamates 21
1.4.1 Synthesis 21
1.4.2 Properties 22
Acknowledgment 24
References 24
2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29
Toshiyuki Takano
2.1 Introduction 29
2.2 Porphyrin-bound Cellulose Derivatives 31
2.3 Phthalocyanine-bound Cellulose Derivatives 34
2.4 Squaraine-bound Cellulose Derivative 40
2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42
2.6 Fullerene-bound Cellulose Derivative 44
2.7 Porphyrin-bound Chitosan Derivative 45
2.8 Conclusion 47
References 47
3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49
Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii
3.1 Introduction 49
3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52
3.3 Regioselective Introduction of the First Polymer Side Chain 55
3.3.1 Introduction of Poly(styrene) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 55
3.3.2 Introduction of Poly(ethylene oxide) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 57
3.4 Regioselective Introduction of the Second Polymer Side Chain 58
3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58
3.4.2 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58
3.5 SEC-MALLS Study 61
3.6 Summary and Outlook 64
Acknowledgments 64
References 64
4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67
Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari
4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67
4.2 Chemistry of Delignification and Cellulose Degradation 70
4.3 Improving the Reactivity of Residual Lignin 73
4.4 Improving Delignification/Cellulose Degradation Selectivity During
Oxygen Delignification 79
4.5 Improving Pulp Yield by Using Oxygen Delignification 90
4.6 Practical Implementation of High Kappa Oxygen Delignification 92
References 93
5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99
Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara
5.1 Introduction 99
5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102
5.2.1 The "Viewpoint of Cellulose" 109
5.2.2 The "Viewpoint of Cellulose Solvents" 113
5.3 Conclusion 118
References 120
6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127
HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsuji
List of Contributors xvii
Preface xxiii
Acknowledgements xxv
1 Aminocelluloses - Polymers with Fascinating Properties and Application Potential 1
Thomas Heinze, Thomas Elschner, and Kristin Ganske
1.1 Introduction 1
1.2 Amino-/ammonium Group Containing Cellulose Esters 2
1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2
1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7
1.3 6-Deoxy-6-amino Cellulose Derivatives 9
1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10
1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13
1.4 Amino Cellulose Carbamates 21
1.4.1 Synthesis 21
1.4.2 Properties 22
Acknowledgment 24
References 24
2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29
Toshiyuki Takano
2.1 Introduction 29
2.2 Porphyrin-bound Cellulose Derivatives 31
2.3 Phthalocyanine-bound Cellulose Derivatives 34
2.4 Squaraine-bound Cellulose Derivative 40
2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42
2.6 Fullerene-bound Cellulose Derivative 44
2.7 Porphyrin-bound Chitosan Derivative 45
2.8 Conclusion 47
References 47
3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49
Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii
3.1 Introduction 49
3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52
3.3 Regioselective Introduction of the First Polymer Side Chain 55
3.3.1 Introduction of Poly(styrene) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 55
3.3.2 Introduction of Poly(ethylene oxide) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 57
3.4 Regioselective Introduction of the Second Polymer Side Chain 58
3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58
3.4.2 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58
3.5 SEC-MALLS Study 61
3.6 Summary and Outlook 64
Acknowledgments 64
References 64
4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67
Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari
4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67
4.2 Chemistry of Delignification and Cellulose Degradation 70
4.3 Improving the Reactivity of Residual Lignin 73
4.4 Improving Delignification/Cellulose Degradation Selectivity During
Oxygen Delignification 79
4.5 Improving Pulp Yield by Using Oxygen Delignification 90
4.6 Practical Implementation of High Kappa Oxygen Delignification 92
References 93
5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99
Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara
5.1 Introduction 99
5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102
5.2.1 The "Viewpoint of Cellulose" 109
5.2.2 The "Viewpoint of Cellulose Solvents" 113
5.3 Conclusion 118
References 120
6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127
HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsuji
Author Biography xv
List of Contributors xvii
Preface xxiii
Acknowledgements xxv
1 Aminocelluloses - Polymers with Fascinating Properties and Application Potential 1
Thomas Heinze, Thomas Elschner, and Kristin Ganske
1.1 Introduction 1
1.2 Amino-/ammonium Group Containing Cellulose Esters 2
1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2
1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7
1.3 6-Deoxy-6-amino Cellulose Derivatives 9
1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10
1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13
1.4 Amino Cellulose Carbamates 21
1.4.1 Synthesis 21
1.4.2 Properties 22
Acknowledgment 24
References 24
2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29
Toshiyuki Takano
2.1 Introduction 29
2.2 Porphyrin-bound Cellulose Derivatives 31
2.3 Phthalocyanine-bound Cellulose Derivatives 34
2.4 Squaraine-bound Cellulose Derivative 40
2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42
2.6 Fullerene-bound Cellulose Derivative 44
2.7 Porphyrin-bound Chitosan Derivative 45
2.8 Conclusion 47
References 47
3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49
Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii
3.1 Introduction 49
3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52
3.3 Regioselective Introduction of the First Polymer Side Chain 55
3.3.1 Introduction of Poly(styrene) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 55
3.3.2 Introduction of Poly(ethylene oxide) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 57
3.4 Regioselective Introduction of the Second Polymer Side Chain 58
3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58
3.4.2 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58
3.5 SEC-MALLS Study 61
3.6 Summary and Outlook 64
Acknowledgments 64
References 64
4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67
Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari
4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67
4.2 Chemistry of Delignification and Cellulose Degradation 70
4.3 Improving the Reactivity of Residual Lignin 73
4.4 Improving Delignification/Cellulose Degradation Selectivity During
Oxygen Delignification 79
4.5 Improving Pulp Yield by Using Oxygen Delignification 90
4.6 Practical Implementation of High Kappa Oxygen Delignification 92
References 93
5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99
Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara
5.1 Introduction 99
5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102
5.2.1 The "Viewpoint of Cellulose" 109
5.2.2 The "Viewpoint of Cellulose Solvents" 113
5.3 Conclusion 118
References 120
6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127
HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsuji
List of Contributors xvii
Preface xxiii
Acknowledgements xxv
1 Aminocelluloses - Polymers with Fascinating Properties and Application Potential 1
Thomas Heinze, Thomas Elschner, and Kristin Ganske
1.1 Introduction 1
1.2 Amino-/ammonium Group Containing Cellulose Esters 2
1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2
1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7
1.3 6-Deoxy-6-amino Cellulose Derivatives 9
1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10
1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13
1.4 Amino Cellulose Carbamates 21
1.4.1 Synthesis 21
1.4.2 Properties 22
Acknowledgment 24
References 24
2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29
Toshiyuki Takano
2.1 Introduction 29
2.2 Porphyrin-bound Cellulose Derivatives 31
2.3 Phthalocyanine-bound Cellulose Derivatives 34
2.4 Squaraine-bound Cellulose Derivative 40
2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42
2.6 Fullerene-bound Cellulose Derivative 44
2.7 Porphyrin-bound Chitosan Derivative 45
2.8 Conclusion 47
References 47
3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49
Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii
3.1 Introduction 49
3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52
3.3 Regioselective Introduction of the First Polymer Side Chain 55
3.3.1 Introduction of Poly(styrene) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 55
3.3.2 Introduction of Poly(ethylene oxide) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 57
3.4 Regioselective Introduction of the Second Polymer Side Chain 58
3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58
3.4.2 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58
3.5 SEC-MALLS Study 61
3.6 Summary and Outlook 64
Acknowledgments 64
References 64
4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67
Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari
4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67
4.2 Chemistry of Delignification and Cellulose Degradation 70
4.3 Improving the Reactivity of Residual Lignin 73
4.4 Improving Delignification/Cellulose Degradation Selectivity During
Oxygen Delignification 79
4.5 Improving Pulp Yield by Using Oxygen Delignification 90
4.6 Practical Implementation of High Kappa Oxygen Delignification 92
References 93
5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99
Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara
5.1 Introduction 99
5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102
5.2.1 The "Viewpoint of Cellulose" 109
5.2.2 The "Viewpoint of Cellulose Solvents" 113
5.3 Conclusion 118
References 120
6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127
HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsuji