The Upper Adriatic Sea basin comprises a very precarious coastal environment subject to continuous changes which prove appreciable not only over the geological scale but also in historical and modern times. According to some Authors the Venice Lagoon was formed 2000-3000 years ago, and other lagoons (e. g. the Grado Lagoon in the northernmost part of the Adriatic) are even more recent. In addition to lagoons, the Upper Adriatic coastal area includes salt and fresh-water marshes and reclaimed land separated by several watercourses originating from the Alpine and Apennine ranges with a ground…mehr
The Upper Adriatic Sea basin comprises a very precarious coastal environment subject to continuous changes which prove appreciable not only over the geological scale but also in historical and modern times. According to some Authors the Venice Lagoon was formed 2000-3000 years ago, and other lagoons (e. g. the Grado Lagoon in the northernmost part of the Adriatic) are even more recent. In addition to lagoons, the Upper Adriatic coastal area includes salt and fresh-water marshes and reclaimed land separated by several watercourses originating from the Alpine and Apennine ranges with a ground elevation not exceeding in many places 2 m above the mean sea l. evel (msl). A significant fraction of this lowland is already now below msl because of natural and anthropogenic land subsidence, land reclamation and sea level rise occurred over the last century. Natural land subsidence is still under way as a result of deep downward tec tonic movement and consolidation of soils deposited in the most recent time. An thropogenic subsidence is primarily due to groundwater pumping for agricultural, industrial, civil, and tourist use, and to gas withdrawal from a large number of gas fields scattered through the Upper Adriatic basin, and may still continue, al though at a reduced rate, in the years to come. At the same time msl is expected to rise in the next century due to global climate change, mainly because of the greenhouse effect.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1 Coastal Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and Anthropic Land Subsidence.- 1.1 Introduction.- 1.2 Description of the Study Area.- 1.3 Predicted Sea Level Rise due to Global Change.- 1.4 Numerical Simulation of Processes Controlling the Coastal Morpho-dynamics.- 1.5 Local scale morphodynamics along the Romagna coast.- 1.6 Macro- and Local Scale Littoral Dynamics and Risk Analysis.- 1.7 Conclusion.- References.- 2 Prediction of Mean Sea Level Rise in the Upper Adriatic Sea.- 2.1 Introduction.- 2.2 Mean Sea Level Changes.- 2.3 Sea Level Fluctuations.- References.- 3 Collection and analysis of historical data on shoreline evolution at the sites of Ravenna, Cesenatico and Rimini.- 3.1 Introduction.- 3.2 Sea Works.- 3.3 The Evolution of the Beach.- References.- 4 Numerical Modeling of Natural Land Subsidence over Sedimentary Basins Undergoing Large Compaction.- 4.1 Introduction.- 4.2 Governing Equations.- 4.3 Numerical solution: Lagrangian approach.- 4.4 Numerical solution: Eulerian approach.- 4.5 Analysis of the total stress variation during compaction with zero sedimentation rate.- 4.6 Preliminary results from the non-linear compaction-sedimentation model.- 4.7 Conclusions.- References.- 5 Numerical Analysis of Land Subsidence due to Natural Compaction of the Upper Adriatic Sea Basin.- 5.1 Introduction.- 5.2 Geological Setting of the Upper Adriatic Sea Basin.- 5.3 Constitutive Soil Model for the Upper Adriatic Sea Basin.- 5.4 Average Depositional Rates During Middle-Upper Pleistocene and Holocene.- 5.5 Records of Natural Land Subsidence.- 5.6 Numerical Analysis of Upper Adriatic Sea Basin Compaction.- 5.7 Conclusion.- References.- 6 Simulation of Land Subsidence Due to Gas Production at Ravenna Coastline.- 6.1 Introduction.- 6.2 Basic Model Formulation.- 6.3 Implementation of the Nonlinear Reservoir Model.- 6.4 Compressibility vs Effective Intergranular Stress for the Sediments of the Upper Adriatic Sea Basin.- 6.5 Angela Angelina Gas Field.- 6.6 Prediction of Land Subsidence over Angela Angelina Gas Field.- 6.7 Conclusions.- References.- 7 Prediction of Land Subsidence Due to Groundwater Withdrawal along the Emilia-Romagna Coast.- 7.1 Introduction.- 7.2 Subsidence of the Romagna Coastline.- 7.3 Hydrological Model of the Romagna Area.- 7.4 Land Subsidence Model.- 7.5 Conclusions.- References.- 8 Wave refraction in the Upper Adriatic Sea.- 8.1 Introduction.- 8.2 The Adriatic Sea Wave Climate.- 8.3 The Model.- 8.4 Model Results.- 8.5 Conclusions.- References.- 9 Storm Wave Simulation in the Adriatic Sea.- 9.1 Introduction.- 9.2 Storm Wave Information.- 9.3 Selected Storms.- 9.4 The WAM Model.- 9.5 Adriatic Sea Implementation of the WAM Model.- 9.6 Future situation: year 2050 and 2100.- 9.7 Conclusions.- References.- 10 Storm Surge Simulations in the Adriatic Sea.- 10.1 Storm Surges Prediction.- 10.2 Nature of Storm Surges in the Adriatic Sea.- 10.3 Scope of the CENAS Study.- 10.4 Mathematical Formulation.- 10.5 Meteorological Forcing.- 10.6 Open boundary condition.- 10.7 Simulation of Tides in the Adriatic Sea.- 10.8 Simulation of Storm Surges in the Adriatic Sea.- 10.9 Scenarios.- 10.10Conclusions.- References.- 11 Coastal Morphodynamics in Subsiding Areas.- 11.1 Introduction.- 11.2 The Coastal Sediment Balance.- 11.3 Morphological Baseline Study.- 11.4 Coastline Evolution.- 11.5 Summary and Conclusions.- References.- 12 Local Morphological Evolution of the Coast in the Upper Adriatic Sea. Design and Management Strategies to Control Coastal Erosion.- 12.1 Introduction.- 12.2 Local Processes Near Offshore Breakwaters.- 12.3 Coastal Evolution: Observed and Simulated.- 12.4 The Different Role of the Various Factors Contributing to the Shore-line Evolution and to the Risk of Coastal Lowland Flooding.- 12.5 Territory Management Strategies.- 12.6 Coastal Defences for Beach Protection. Objectives and Strategies.- References.- 13 Geographic Information System (GIS) and Data Management and Retrieval System (DMRS) in the CENAS Project.- 13.1 Introduction.- 13.2 The GIS component of the CENAS Project.- 13.3 The DMRS component of the CENAS project.- References.- 14 Flood Risk Analysis in the Upper Adriatic Sea due to Storm Surge, Tide, Waves, and Natural and Anthropic Land Subsidence.- 14.1 Introduction.- 14.2 Macro Scale Littoral Dynamics and Risk Analysis.- 14.3 Local Scale Analysis.- 14.4 Conclusion.- References.- Author Index.- List of Contributors.- Color Plates.
1 Coastal Evolution of the Upper Adriatic Sea due to Sea Level Rise and Natural and Anthropic Land Subsidence.- 1.1 Introduction.- 1.2 Description of the Study Area.- 1.3 Predicted Sea Level Rise due to Global Change.- 1.4 Numerical Simulation of Processes Controlling the Coastal Morpho-dynamics.- 1.5 Local scale morphodynamics along the Romagna coast.- 1.6 Macro- and Local Scale Littoral Dynamics and Risk Analysis.- 1.7 Conclusion.- References.- 2 Prediction of Mean Sea Level Rise in the Upper Adriatic Sea.- 2.1 Introduction.- 2.2 Mean Sea Level Changes.- 2.3 Sea Level Fluctuations.- References.- 3 Collection and analysis of historical data on shoreline evolution at the sites of Ravenna, Cesenatico and Rimini.- 3.1 Introduction.- 3.2 Sea Works.- 3.3 The Evolution of the Beach.- References.- 4 Numerical Modeling of Natural Land Subsidence over Sedimentary Basins Undergoing Large Compaction.- 4.1 Introduction.- 4.2 Governing Equations.- 4.3 Numerical solution: Lagrangian approach.- 4.4 Numerical solution: Eulerian approach.- 4.5 Analysis of the total stress variation during compaction with zero sedimentation rate.- 4.6 Preliminary results from the non-linear compaction-sedimentation model.- 4.7 Conclusions.- References.- 5 Numerical Analysis of Land Subsidence due to Natural Compaction of the Upper Adriatic Sea Basin.- 5.1 Introduction.- 5.2 Geological Setting of the Upper Adriatic Sea Basin.- 5.3 Constitutive Soil Model for the Upper Adriatic Sea Basin.- 5.4 Average Depositional Rates During Middle-Upper Pleistocene and Holocene.- 5.5 Records of Natural Land Subsidence.- 5.6 Numerical Analysis of Upper Adriatic Sea Basin Compaction.- 5.7 Conclusion.- References.- 6 Simulation of Land Subsidence Due to Gas Production at Ravenna Coastline.- 6.1 Introduction.- 6.2 Basic Model Formulation.- 6.3 Implementation of the Nonlinear Reservoir Model.- 6.4 Compressibility vs Effective Intergranular Stress for the Sediments of the Upper Adriatic Sea Basin.- 6.5 Angela Angelina Gas Field.- 6.6 Prediction of Land Subsidence over Angela Angelina Gas Field.- 6.7 Conclusions.- References.- 7 Prediction of Land Subsidence Due to Groundwater Withdrawal along the Emilia-Romagna Coast.- 7.1 Introduction.- 7.2 Subsidence of the Romagna Coastline.- 7.3 Hydrological Model of the Romagna Area.- 7.4 Land Subsidence Model.- 7.5 Conclusions.- References.- 8 Wave refraction in the Upper Adriatic Sea.- 8.1 Introduction.- 8.2 The Adriatic Sea Wave Climate.- 8.3 The Model.- 8.4 Model Results.- 8.5 Conclusions.- References.- 9 Storm Wave Simulation in the Adriatic Sea.- 9.1 Introduction.- 9.2 Storm Wave Information.- 9.3 Selected Storms.- 9.4 The WAM Model.- 9.5 Adriatic Sea Implementation of the WAM Model.- 9.6 Future situation: year 2050 and 2100.- 9.7 Conclusions.- References.- 10 Storm Surge Simulations in the Adriatic Sea.- 10.1 Storm Surges Prediction.- 10.2 Nature of Storm Surges in the Adriatic Sea.- 10.3 Scope of the CENAS Study.- 10.4 Mathematical Formulation.- 10.5 Meteorological Forcing.- 10.6 Open boundary condition.- 10.7 Simulation of Tides in the Adriatic Sea.- 10.8 Simulation of Storm Surges in the Adriatic Sea.- 10.9 Scenarios.- 10.10Conclusions.- References.- 11 Coastal Morphodynamics in Subsiding Areas.- 11.1 Introduction.- 11.2 The Coastal Sediment Balance.- 11.3 Morphological Baseline Study.- 11.4 Coastline Evolution.- 11.5 Summary and Conclusions.- References.- 12 Local Morphological Evolution of the Coast in the Upper Adriatic Sea. Design and Management Strategies to Control Coastal Erosion.- 12.1 Introduction.- 12.2 Local Processes Near Offshore Breakwaters.- 12.3 Coastal Evolution: Observed and Simulated.- 12.4 The Different Role of the Various Factors Contributing to the Shore-line Evolution and to the Risk of Coastal Lowland Flooding.- 12.5 Territory Management Strategies.- 12.6 Coastal Defences for Beach Protection. Objectives and Strategies.- References.- 13 Geographic Information System (GIS) and Data Management and Retrieval System (DMRS) in the CENAS Project.- 13.1 Introduction.- 13.2 The GIS component of the CENAS Project.- 13.3 The DMRS component of the CENAS project.- References.- 14 Flood Risk Analysis in the Upper Adriatic Sea due to Storm Surge, Tide, Waves, and Natural and Anthropic Land Subsidence.- 14.1 Introduction.- 14.2 Macro Scale Littoral Dynamics and Risk Analysis.- 14.3 Local Scale Analysis.- 14.4 Conclusion.- References.- Author Index.- List of Contributors.- Color Plates.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826