The problem of molecules interacting with metal surfaces has for a very long time been recognized to be of considerable technological as well as fundamental importance. Thus in the former category, a substantial number of important synthetic reactions for industrial purposes make use of metal surfaces as catalysts. Or again, problems of corrosion of metals are of great practical importance, such as in nuclear-reactor technology [see, for instance, my earlier articles, in: Physics Bulletin, Volume 25, p. 582, Institute of Physics, UK (1974); and in: Physics and Contemporqry Needs (Riazuddin,…mehr
The problem of molecules interacting with metal surfaces has for a very long time been recognized to be of considerable technological as well as fundamental importance. Thus in the former category, a substantial number of important synthetic reactions for industrial purposes make use of metal surfaces as catalysts. Or again, problems of corrosion of metals are of great practical importance, such as in nuclear-reactor technology [see, for instance, my earlier articles, in: Physics Bulletin, Volume 25, p. 582, Institute of Physics, UK (1974); and in: Physics and Contemporqry Needs (Riazuddin, ed. ), Vol. 1, p. 53, Plenum Press, New York (1977)]. It is therefore of significance to strive to gain a more fundamental understand ing of the atomic, and ultimately the electronic, processes that occur when a molecule is brought into the proximity of a metal surface. The present volume focuses mainly on the theory and concepts involved; however, it is intended for readers in chemistry, physics, and materials science who are not specialists in theory but nevertheless wish to learn more about this truly interdisciplinary area of theoretical science. The aim of the book is to present the way in which valence theory can be synthesized with the understanding of metals that has been gained over the last half century or so. While advanced theory has at times been necessary, is largely presented in an extensive set of Appendixes.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1. Background, Phenomenology, and Motivation.- 1.1. Chemisorption in Ionic and Covalent Limits.- 1.1.1. Ionic Bond Formation.- 1.1.2. Covalently Bonded Cases.- 1.2. Kinetics of Adsorption and Desorption.- 1.3. Thermodynamics of Adsorption.- 1.3.1. Langmuir Isotherm.- 1.3.2. Multilayer Adsorption Theory.- 1.4. Reaction Mechanisms Outside Surfaces.- 1.4.1. Langmuir-Hinshelwood and Rideal-Eley Mechanisms.- 1.4.2. Redhead Equation for Desorption Rate.- 1.5. Case History of Catalytic Hydrogenation of Carbon Monoxide.- 1.5.1. Thermodynamics.- 1.5.2. Chemisorption Studies of CO and H2.- 1.5.3. Selectivity.- 1.5.4. Mechanism.- 2. Diatomic Molecules.- 2.1. Physisorbed Diatoms with Weil-Defined Cores.- 2.1.1. Image Theory of the Dispersion Force.- 2.2. Interaction Between Two Hydrogen Atoms.- 2.2.1. Physisorbed H2.- 2.2.2. Protons Embedded in the Spill-Out Metal Electron Clouds.- 2.3. Interaction Energy: Tight-Binding Model.- 2.3.1. Range of Validity: Anisotropic Effects, Adatom-Substrate Coupling, and Energy-Level Matching.- 2.4. Molecular Versus Dissociative Adsorption.- 2.4.1. Pauling s Treatment of Bond Energies.- 2.4.2. Bonding and Valence in Transition Metals.- 2.4.3. Admolecule Bonding to a Metal Surface.- 2.4.4. Chemisorption of N2, O2, CO, and NO.- 2.5. Detailed Bonding Studies.- 2.5.1. Nitrogen on Metal Surfaces.- 2.5.2. Cluster Modeling of NO on Ni.- 2.5.3. Limitations and Convergence Properties of Cluster Calculations.- 2.6. Electronically Excited States of Chemisorbed Diatoms.- 2.6.1. EELS Study of Weakly Adsorbed Systems.- 2.6.2. Summary of Assignments.- 2.7. Orientation of Molecular Adsorbates.- 2.8. Temperature Effects, and Comparison Between Theory and Experiment.- 3. Conformation and Electronic Structure of Polyatomic Molecules.- 3.1. Conformation of a Water Molecule Outside a Metal Surface.- 3.1.1. Valence Theory of Free-Space Conformation.- 3.1.2. Interaction Energy in a Water Molecule.- 3.1.3. Introduction of the Image Potential.- 3.1.4. Effect of the Surface on Hybridization.- 3.1.5. Results and Discussion.- 3.2. Conformation of NH3 and C2H4 Molecules.- 3.2.1. Interaction Between Lone Pair and Image for NH3.- 3.2.2. Adsorption of Ethylene on a Planar Metal Surface.- 3.2.3. Cluster Approach to the Electronic-Level Structure of Ethylene on Ni(100).- 3.3. Molecular Versus Dissociative Adsorption of NH3 on Transition-Metal Surfaces.- 3.4. Electronic Structure and Conformation of Ethene on Transition- and Noble-Metal Surfaces.- 3.4.1. Conformation of Ethene on Metal Surfaces.- 3.4.2. Tight-Binding Model of ?-Levels of Adsorbed Ethene.- 3.4.3. Effect of the Surface on ?-Levels.- 3.4.4. ?-Orbital Bonding and Charge Transfer Between Molecule and Metal.- 3.5. Interaction Between Adsorbates.- 3.5.1. Hydrogen-Bonded Clusters of H2O.- 3.5.2. Some Organic Molecules.- 3.6. Electronic Excited States of Chemisorbed Polyatomic Molecules.- 4. Dynamics of Adparticles and Neutron Inelastic Scattering.- 4.1. Principles of Neutron Scattering from Adsorbed Molecules.- 4.2. Comparison With Other Surface Techniques.- 4.3. Diffusion Measurements.- 4.4. Theory.- 4.4.1. Influence of Diffusion on Scattering Cross-Section.- 4.5. Electronic and Vibration-Rotation Spectra of Adsorbed Molecules.- 4.6. Adsorbate Frequency Shifts.- 4.6.1. Influence of n-Fold Coordination.- 4.6.2. Intensity in Local Mode at Adsorbate Site.- 4.7. Theoretical Framework for Interpreting Neutron Inelastic Scattering From Covered Surfaces.- 4.7.1. Description of the Model.- 4.7.2. Coupling of an Adparticle to a Two-Dimensional Square Lattice.- 4.7.3. Interpretation of Neutron Intensity for Hydrogen on Platinum.- 4.8. Theory of Surface Diffusion.- 4.9. Vibration Excitation in Molecule-Surface Collisions Due to Temporary Negative Molecular-Ion Formation.- 4.10. Adparticle Dynamics: Kramers Equation in a Metallic Medium.- 4.10.1. Electronic Contribution to the Surface-Friction Constant.- 4.10.2. Introduction of Inhomogeneity at a Metal Surface.- 4.10.3. Long-Range Dynamic I
1. Background, Phenomenology, and Motivation.- 1.1. Chemisorption in Ionic and Covalent Limits.- 1.1.1. Ionic Bond Formation.- 1.1.2. Covalently Bonded Cases.- 1.2. Kinetics of Adsorption and Desorption.- 1.3. Thermodynamics of Adsorption.- 1.3.1. Langmuir Isotherm.- 1.3.2. Multilayer Adsorption Theory.- 1.4. Reaction Mechanisms Outside Surfaces.- 1.4.1. Langmuir-Hinshelwood and Rideal-Eley Mechanisms.- 1.4.2. Redhead Equation for Desorption Rate.- 1.5. Case History of Catalytic Hydrogenation of Carbon Monoxide.- 1.5.1. Thermodynamics.- 1.5.2. Chemisorption Studies of CO and H2.- 1.5.3. Selectivity.- 1.5.4. Mechanism.- 2. Diatomic Molecules.- 2.1. Physisorbed Diatoms with Weil-Defined Cores.- 2.1.1. Image Theory of the Dispersion Force.- 2.2. Interaction Between Two Hydrogen Atoms.- 2.2.1. Physisorbed H2.- 2.2.2. Protons Embedded in the Spill-Out Metal Electron Clouds.- 2.3. Interaction Energy: Tight-Binding Model.- 2.3.1. Range of Validity: Anisotropic Effects, Adatom-Substrate Coupling, and Energy-Level Matching.- 2.4. Molecular Versus Dissociative Adsorption.- 2.4.1. Pauling s Treatment of Bond Energies.- 2.4.2. Bonding and Valence in Transition Metals.- 2.4.3. Admolecule Bonding to a Metal Surface.- 2.4.4. Chemisorption of N2, O2, CO, and NO.- 2.5. Detailed Bonding Studies.- 2.5.1. Nitrogen on Metal Surfaces.- 2.5.2. Cluster Modeling of NO on Ni.- 2.5.3. Limitations and Convergence Properties of Cluster Calculations.- 2.6. Electronically Excited States of Chemisorbed Diatoms.- 2.6.1. EELS Study of Weakly Adsorbed Systems.- 2.6.2. Summary of Assignments.- 2.7. Orientation of Molecular Adsorbates.- 2.8. Temperature Effects, and Comparison Between Theory and Experiment.- 3. Conformation and Electronic Structure of Polyatomic Molecules.- 3.1. Conformation of a Water Molecule Outside a Metal Surface.- 3.1.1. Valence Theory of Free-Space Conformation.- 3.1.2. Interaction Energy in a Water Molecule.- 3.1.3. Introduction of the Image Potential.- 3.1.4. Effect of the Surface on Hybridization.- 3.1.5. Results and Discussion.- 3.2. Conformation of NH3 and C2H4 Molecules.- 3.2.1. Interaction Between Lone Pair and Image for NH3.- 3.2.2. Adsorption of Ethylene on a Planar Metal Surface.- 3.2.3. Cluster Approach to the Electronic-Level Structure of Ethylene on Ni(100).- 3.3. Molecular Versus Dissociative Adsorption of NH3 on Transition-Metal Surfaces.- 3.4. Electronic Structure and Conformation of Ethene on Transition- and Noble-Metal Surfaces.- 3.4.1. Conformation of Ethene on Metal Surfaces.- 3.4.2. Tight-Binding Model of ?-Levels of Adsorbed Ethene.- 3.4.3. Effect of the Surface on ?-Levels.- 3.4.4. ?-Orbital Bonding and Charge Transfer Between Molecule and Metal.- 3.5. Interaction Between Adsorbates.- 3.5.1. Hydrogen-Bonded Clusters of H2O.- 3.5.2. Some Organic Molecules.- 3.6. Electronic Excited States of Chemisorbed Polyatomic Molecules.- 4. Dynamics of Adparticles and Neutron Inelastic Scattering.- 4.1. Principles of Neutron Scattering from Adsorbed Molecules.- 4.2. Comparison With Other Surface Techniques.- 4.3. Diffusion Measurements.- 4.4. Theory.- 4.4.1. Influence of Diffusion on Scattering Cross-Section.- 4.5. Electronic and Vibration-Rotation Spectra of Adsorbed Molecules.- 4.6. Adsorbate Frequency Shifts.- 4.6.1. Influence of n-Fold Coordination.- 4.6.2. Intensity in Local Mode at Adsorbate Site.- 4.7. Theoretical Framework for Interpreting Neutron Inelastic Scattering From Covered Surfaces.- 4.7.1. Description of the Model.- 4.7.2. Coupling of an Adparticle to a Two-Dimensional Square Lattice.- 4.7.3. Interpretation of Neutron Intensity for Hydrogen on Platinum.- 4.8. Theory of Surface Diffusion.- 4.9. Vibration Excitation in Molecule-Surface Collisions Due to Temporary Negative Molecular-Ion Formation.- 4.10. Adparticle Dynamics: Kramers Equation in a Metallic Medium.- 4.10.1. Electronic Contribution to the Surface-Friction Constant.- 4.10.2. Introduction of Inhomogeneity at a Metal Surface.- 4.10.3. Long-Range Dynamic I
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826