The best protection against environmental mutagens is to identify them before they ever come into general use. But it is always possible that some substance will escape detection and affect a large number of persons without this being realized until later generations. This article considers ways in which such a genetic emergency might be promptly detected. A mutation-detecting system should be relevant in that it tests for effects that are as closely related as possible to those that are feared. It should be sensitive enough to detect a moderate increase in mutation rate, able to discover the…mehr
The best protection against environmental mutagens is to identify them before they ever come into general use. But it is always possible that some substance will escape detection and affect a large number of persons without this being realized until later generations. This article considers ways in which such a genetic emergency might be promptly detected. A mutation-detecting system should be relevant in that it tests for effects that are as closely related as possible to those that are feared. It should be sensitive enough to detect a moderate increase in mutation rate, able to discover the increase promptly before more damage is done, responsive to various kinds of mutational events, and designed in such a way as to maxi- mize the probability that the Gause of an increase can be found. Methods based on germinal mutation necessarily involve enormous numbers of persons and tests. On the other hand, with somatic mutations the individual cell becomes the unit of measurement rather than the in- dividual person. For this reason, I think that somatic tests are preferable to germinal tests, despite the fact that it is germinal mutations which are feared.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
1 In Vivo Mutagenicity Testing Using Somatic Cells of Drosophila melanogaster.- 1. Introduction.- 2. Basic Developmental Biology of Drosophila.- 3. The Wing Mosaic System.- 3.1. The Genetic Basis of the Wing System.- 3.2. Scoring.- 3.3. Data Analysis.- 3.4. Spontaneous Frequencies of Spots in Different Genetic Backgrounds.- 4. The White/White-Coral Eye Mosaic System.- 4.1. The Genetic Basis of the White/White-Coral System.- 4.2. Scoring.- 4.3. Data Analysis.- 4.4. Background Frequencies of Spots.- 5. The Unstable White-Zeste Eye Mosaic System.- 5.1. The Genetic Basis of the Unstable White-Zeste System.- 5.2. Scoring.- 5.3. Data Analysis.- 5.4. Background Frequencies of Spots.- 5.5. Mechanism.- 6. Exposure Techniques.- 6.1. Egg Collection.- 6.2. Collection of Larvae.- 6.3. Feeding.- 6.4. Inhalation.- 6.5. Injection.- 6.6. Solvents.- 6.7. Dosimetry.- 7. Discussion.- 7.1. Genetic Mechanisms.- 7.2. Differences between Genotypes.- 7.3. Toxic Effects and Cell Death.- 7.4. Status of Validation.- 7.5. Comparison of Germ Cells versus Somatic Cells.- 7.6. Comparison of Drosophila Tests with Other Assay Systems.- 7.7. Future Developments.- 7.8. Test Performance.- 8. Conclusions.- 9. References.- 2 Structural and Metabolic Parameters Governing the Mutagenicity of Polycyclic Aromatic Hydrocarbons.- 1. Introduction.- 1.1. Scope of This Review.- 1.2. Terms, Short Names, and Abbreviations.- 1.3. Overview of the Metabolism of PAHs in Mammals.- 2. Activation Pathways of PAHs.- 2.1. Requirement of Activation for Mutagenicity to Occur.- 2.2. Activation to Monofunctional Epoxides.- 2.3. Activation to Vicinal Diol-Epoxides.- 2.4. Activation to Benzylic Esters.- 2.5. Activation to Free Radicals.- 2.6. Other Activation Pathways.- 3. Contribution of Different Activation Pathways to the Mutagenicity of PAHs.- 3.1. DNA Adducts.- 3.2. Modified Test Compounds to Elucidate the Activation Process.- 3.3. Use of Diagnostic Enzymes and Enzyme Inhibitors.- 4. Metabolic Control of Mutagenic Intermediates of PAHs.- 4.1. Mutagenicity Experiments with Subcellular Metabolizing Systems.- 4.2. Mutagenicity Experiments Using Intact Cells as the Metabolizing Systems.- 5. Summary and Conclusions.- 6. Addendum: Recent Developments.- 6.1. Mutagenicity of Quinones.- 6.2. Mutagenicity of Phenol-diol-epoxides.- 7. References.- 3 Chromosomal Mutations: The Genetic Approach.- 1. Introduction.- 2. The Main Categories of Chromosomal Mutation.- 2.1. Numerical Anomalies.- 2.2. Structural Anomalies.- 3. Genetic Detection of Aneuploidy in the Mouse.- 3.1. Sex-Chromosomal Aneuploidy.- 3.2. Autosomal Aneuploidy.- 4. Reciprocal Translocations: Detection and Analysis.- 4.1. Translocations in Specific Locus Tests.- 4.2. Heritable Translocation Assays.- 4.3. Genetic Analysis of Reciprocal Translocations and Their Products.- 5. Detection and Study of Other Translocations and of Inversions.- 5.1. Robertsonian Translocations.- 5.2. Insertions.- 5.3. Inversions.- 6. Detection and Study of Deletions.- 6.1. X-Chromosomal Deletions.- 6.2. Autosomal Deletions.- 7. Conclusions.- 8. References.- 4 Cytogenetic Assays for Mitotic Poisons Using Somatic Animal Cells.- 1. Introduction.- 2. Mitotic Poisons and Their Genomic Effects.- 2.1. The Spindle Apparatus.- 2.2. The Centriole.- 2.3. Kinetochores.- 2.4. Cytokinesis.- 3. Assays with Diploid Mammalian Cells in Vitro.- 3.1. Choice of Cell Lines.- 3.2. Mitotic Arrest.- 3.3. Recovery Experiments.- 3.4. Aneuploidy Enumeration.- 3.5. Slide Reading.- 4. Assays with Bone Marrow Cells in Vivo.- 4.1. Animals.- 4.2. Techniques.- 5. Assays with Grasshopper Embryos.- 5.1. Test Materials.- 5.2. General Information about Grasshopper Embryos.- 5.3. Procedure.- 6. Conclusions.- 7. References.- 5 Detection of Aneuploidy in Drosophila.- 1. Introduction.- 1.1. Role of Drosophila.- 1.2. Definition of Aneuploidy.- 2. Issues.- 2.1. Sex.- 2.2. Germ Cell Stage.- 2.3. Other Factors.- 3. Assay Systems.- 3.1. Classical Test.- 3.2. Selective and Semi selective Tests.- 4. Known Po
1 In Vivo Mutagenicity Testing Using Somatic Cells of Drosophila melanogaster.- 1. Introduction.- 2. Basic Developmental Biology of Drosophila.- 3. The Wing Mosaic System.- 3.1. The Genetic Basis of the Wing System.- 3.2. Scoring.- 3.3. Data Analysis.- 3.4. Spontaneous Frequencies of Spots in Different Genetic Backgrounds.- 4. The White/White-Coral Eye Mosaic System.- 4.1. The Genetic Basis of the White/White-Coral System.- 4.2. Scoring.- 4.3. Data Analysis.- 4.4. Background Frequencies of Spots.- 5. The Unstable White-Zeste Eye Mosaic System.- 5.1. The Genetic Basis of the Unstable White-Zeste System.- 5.2. Scoring.- 5.3. Data Analysis.- 5.4. Background Frequencies of Spots.- 5.5. Mechanism.- 6. Exposure Techniques.- 6.1. Egg Collection.- 6.2. Collection of Larvae.- 6.3. Feeding.- 6.4. Inhalation.- 6.5. Injection.- 6.6. Solvents.- 6.7. Dosimetry.- 7. Discussion.- 7.1. Genetic Mechanisms.- 7.2. Differences between Genotypes.- 7.3. Toxic Effects and Cell Death.- 7.4. Status of Validation.- 7.5. Comparison of Germ Cells versus Somatic Cells.- 7.6. Comparison of Drosophila Tests with Other Assay Systems.- 7.7. Future Developments.- 7.8. Test Performance.- 8. Conclusions.- 9. References.- 2 Structural and Metabolic Parameters Governing the Mutagenicity of Polycyclic Aromatic Hydrocarbons.- 1. Introduction.- 1.1. Scope of This Review.- 1.2. Terms, Short Names, and Abbreviations.- 1.3. Overview of the Metabolism of PAHs in Mammals.- 2. Activation Pathways of PAHs.- 2.1. Requirement of Activation for Mutagenicity to Occur.- 2.2. Activation to Monofunctional Epoxides.- 2.3. Activation to Vicinal Diol-Epoxides.- 2.4. Activation to Benzylic Esters.- 2.5. Activation to Free Radicals.- 2.6. Other Activation Pathways.- 3. Contribution of Different Activation Pathways to the Mutagenicity of PAHs.- 3.1. DNA Adducts.- 3.2. Modified Test Compounds to Elucidate the Activation Process.- 3.3. Use of Diagnostic Enzymes and Enzyme Inhibitors.- 4. Metabolic Control of Mutagenic Intermediates of PAHs.- 4.1. Mutagenicity Experiments with Subcellular Metabolizing Systems.- 4.2. Mutagenicity Experiments Using Intact Cells as the Metabolizing Systems.- 5. Summary and Conclusions.- 6. Addendum: Recent Developments.- 6.1. Mutagenicity of Quinones.- 6.2. Mutagenicity of Phenol-diol-epoxides.- 7. References.- 3 Chromosomal Mutations: The Genetic Approach.- 1. Introduction.- 2. The Main Categories of Chromosomal Mutation.- 2.1. Numerical Anomalies.- 2.2. Structural Anomalies.- 3. Genetic Detection of Aneuploidy in the Mouse.- 3.1. Sex-Chromosomal Aneuploidy.- 3.2. Autosomal Aneuploidy.- 4. Reciprocal Translocations: Detection and Analysis.- 4.1. Translocations in Specific Locus Tests.- 4.2. Heritable Translocation Assays.- 4.3. Genetic Analysis of Reciprocal Translocations and Their Products.- 5. Detection and Study of Other Translocations and of Inversions.- 5.1. Robertsonian Translocations.- 5.2. Insertions.- 5.3. Inversions.- 6. Detection and Study of Deletions.- 6.1. X-Chromosomal Deletions.- 6.2. Autosomal Deletions.- 7. Conclusions.- 8. References.- 4 Cytogenetic Assays for Mitotic Poisons Using Somatic Animal Cells.- 1. Introduction.- 2. Mitotic Poisons and Their Genomic Effects.- 2.1. The Spindle Apparatus.- 2.2. The Centriole.- 2.3. Kinetochores.- 2.4. Cytokinesis.- 3. Assays with Diploid Mammalian Cells in Vitro.- 3.1. Choice of Cell Lines.- 3.2. Mitotic Arrest.- 3.3. Recovery Experiments.- 3.4. Aneuploidy Enumeration.- 3.5. Slide Reading.- 4. Assays with Bone Marrow Cells in Vivo.- 4.1. Animals.- 4.2. Techniques.- 5. Assays with Grasshopper Embryos.- 5.1. Test Materials.- 5.2. General Information about Grasshopper Embryos.- 5.3. Procedure.- 6. Conclusions.- 7. References.- 5 Detection of Aneuploidy in Drosophila.- 1. Introduction.- 1.1. Role of Drosophila.- 1.2. Definition of Aneuploidy.- 2. Issues.- 2.1. Sex.- 2.2. Germ Cell Stage.- 2.3. Other Factors.- 3. Assay Systems.- 3.1. Classical Test.- 3.2. Selective and Semi selective Tests.- 4. Known Po
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826