Chemistry and Physics of Solid Surfaces IV
Herausgegeben von Vanselow, R.; Howe, Russell
Chemistry and Physics of Solid Surfaces IV
Herausgegeben von Vanselow, R.; Howe, Russell
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
At the International Summer Institute in Surface Science (ISISS), which is held bienially on the Campus of the University of Wisconsin-Milwaukee, invited speakers present tutorial review lectures during the course of one week. The majority of the presentations deal with the gas-solid interface, but now and then relevant reviews concerning liquid-solid or solid-solid interfaces are included. The goal of ISISS was outlined in the first ISISS publication: "We recognize that the International Summer Institute in Surface Science should foster mutual understanding and interaction among theorists and…mehr
Andere Kunden interessierten sich auch für
- Physics and Chemistry of Electrons and Ions in Condensed Matter249,99 €
- G. V. SamsonovA Configurational Model of Matter42,99 €
- Ion Formation from Organic Solids (IFOS III)83,99 €
- J.V. Acrivos / N.F. Mott / A.D. Joffe (Hgg.)Physics and Chemistry of Electrons and Ions in Condensed Matter251,99 €
- Inelastic Particle-Surface Collisions83,99 €
- Charles S. BarrettAdvances in X-Ray Analysis42,99 €
- T. WolkensteinElectronic Processes on Semiconductor Surfaces During Chemisorption122,99 €
-
-
-
At the International Summer Institute in Surface Science (ISISS), which is held bienially on the Campus of the University of Wisconsin-Milwaukee, invited speakers present tutorial review lectures during the course of one week. The majority of the presentations deal with the gas-solid interface, but now and then relevant reviews concerning liquid-solid or solid-solid interfaces are included. The goal of ISISS was outlined in the first ISISS publication: "We recognize that the International Summer Institute in Surface Science should foster mutual understanding and interaction among theorists and experimentalists in the various areas of surface science. Progress can be achieved only when we occasionally peek over the fence into neighboring areas, not so much to amuse ourselves that the grass is greener on the other side as to learn from their progress and, perhaps equally fruitfully, from their limitations and setbacks. In addition, it is an important task in any field of science toassess, take count of what is done and, what is more important, to point in future directions. " Since the foundation of ISISS in 1973, the invited speakers - internation ally recognized experts in their area of specialization - have been asked to write review articles too. We wanted in this way to ensure that the largest possible group of scientists could benefit from the special review concept.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Springer Series in Chemical Physics .20
- Verlag: Springer, Berlin
- Softcover reprint of the original 1st ed. 1982
- Seitenzahl: 516
- Erscheinungstermin: 9. April 2012
- Englisch
- Abmessung: 235mm x 155mm x 28mm
- Gewicht: 774g
- ISBN-13: 9783642474996
- ISBN-10: 3642474993
- Artikelnr.: 37478375
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Springer Series in Chemical Physics .20
- Verlag: Springer, Berlin
- Softcover reprint of the original 1st ed. 1982
- Seitenzahl: 516
- Erscheinungstermin: 9. April 2012
- Englisch
- Abmessung: 235mm x 155mm x 28mm
- Gewicht: 774g
- ISBN-13: 9783642474996
- ISBN-10: 3642474993
- Artikelnr.: 37478375
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
1. Development of Photoemission as a Tool for Surface Science: 1900-1980.- 1.1 Introduction.- 1.2 The Einstein Era: 1900-1930.- 1.3 The Period of Misguided Quantum Mechanics: 1930-1945.- 1.4 The Development of the Correct Fundamental Understanding of the Photoemission Process: 1945-1960.- 1.5 The Development of Photoemission Spectroscopy: 1960-1970.- 1.6 The Explosive Era in Which Photoemission Spectroscopy Was Successfully Applied to the Study of Surfaces: 1970-1980.- 1.7 Conclusions.- References.- 2. Auger Spectroscopy as a Probe of Valence Bonds and Bands.- 2.1 Introduction.- 2.2 Lineshape Description - One-Electron Model.- 2.2.1 Atomic Auger Matrix Elements.- 2.2.2 Local or Mulliken Populations.- 2.3 Localization.- 2.4 Screening.- 2.5 Outlook.- 2.5.1 ESD/PSD.- 2.5.2 AES in the Gas Phase and Chemisorbed Systems.- 2.5.3 AES in the Bulk and at Interfaces.- 2.6 Summary.- References.- 3. SIMS of Reactive Surfaces.- 3.1 Introduction.- 3.2 Single Crystal Metal Surfaces.- 3.2.1 Characteristics of SIMS.- 3.2.2 CO and O2 on Ru{001}.- 3.2.3 Classical Dynamics Modelling.- 3.2.4 Structure from Angle Dependence.- 3.2.5 Reactive Intermediates.- 3.3 Molecular SIMS.- 3.3.1 SIMS of Molecular Solids.- 3.3.2 Thiophene on Silver.- 3.3.3 Inorganic Complexes.- 3.4 Complex Surfaces.- 3.4.1 Proximity.- 3.4.2 Prospects for Catalysis.- 3.5 Conclusions.- References.- 4. Chemisorption Investigated by Ellipsometry.- 4.1 Introduction.- 4.2 Principles of Ellipsometry.- 4.3 (Sub)Monolayer Models.- 4.4 Clean Metal Surfaces.- 4.5 Spectroscopic Ellipsometry of Overlayers.- 4.6 Kinetic Studies of Chemisorption.- 4.6.1 Coverage Calibration.- 4.6.2 Initial Stages of Oxidation.- 4.6.3 Reactions of Adsorbed Oxygen.- References.- 5. The Implications for Surface Science of Doppler-Shift LaserFluorescence Spectroscopy.- 5.1 Introduction.- 5.2 Charge Transfer Processes at Surfaces.- 5.3 Laser Fluorescence Spectroscopic Measurements of Fluxes and Energy Distributions of Sputtered Particles.- References.- 6. Analytical Electron Microscopy in Surface Science.- 6.1 Introduction.- 6.2 Analytical Electron Microscopy Techniques.- 6.3 Scanning Electron Microscopy of Surfaces.- 6.4 Surface Spectroscopies and Microscopy.- 6.4.1 Auger Electron Spectroscopy and Microscopy.- 6.4.2 Secondary Electron Spectroscopy and Work Function Imaging.- 6.4.3 Photoemission and Energy-Loss Spectroscopy.- 6.5 Diffraction Techniques and Microscopy.- 6.5.1 Transmission Electron Diffraction and Microscopy.- 6.5.2 RHEED and Reflection Microscopy.- 6.5.3 LEED and Low-Energy Microscopy.- References.- 7. He Diffraction as a Probe of Semiconductor Surface Structures.- 7.1 Introduction.- 7.2 Si{100}: Disordered Dimer Array.- 7.2.1 Si{100} Periodicity.- 7.2.2 Diffraction Scans and Qualitative Features of the Si{100} Surface.- 7.2.3 Specular Intensities.- 7.2.4 Structural Models for Si{100}.- 7.3 GaAs {110}.- 7.3.1 Diffraction Scans.- 7.3.2 Specular Intensity Scans.- 7.3.3 Rigorous Calculation of Diffraction Intensities.- 7.3.4 The Original of the He/GaAs Potential.- 7.3.5 Computation of Rarified Charge Densities.- 7.3.6 Summary.- 7.4 Si{111} (7×7).- 7.4.1 Diffraction Scans.- 7.4.2 Specular Intensity Interference.- 7.4.3 A Model of the Si{111} (7×7).- 7.4.4 Summary.- References.- 8. Studies of Adsorption at Well-Ordered Electrode Surfaces Using Low-Energy Electron Diffraction.- 8.1 Introduction.- 8.2 Thermodynamics of Electrodeposition.- 8.3 Experimental Methods.- 8.4 Underpotential States of Hydrogen on Pt.- 8.4.1 Isotherms for Hydrogen on {111} and {100} Pt.- 8.4.2 Hydrogen at SteppedSurfaces.- 8.5 Underpotential States of Oxygen on Pt.- 8.6 Underpotential States of Metals on Metals.- 8.7 Relation of the Underpotential State to the Chemisorbed State in Vacuum.- References.- 9. Low-Energy Electron Diffraction Studies of Physically Adsorbed Films.- 9.1 Introduction.- 9.2 Background.- 9.3 LEED Instrument.- 9.4 Krypton on Graphite.- 9.5 Arçon on Graphite.- 9.5.1 Rotational Epitaxy of an Incommensurate Monolayer.- 9.5.2 Thermodynamics of an Incommensurate Monolayer.- 9.5.3 Overlayer-Substrate Spacing for an Incommensurate Monolayer.- 9.6 Nitrogen on Graphite.- 9.7 Conclusions.- References.- 10. Monte Carlo Simulations of Chemisorbed Overlayers.- 10.1 Introduction.- 10.2 Motivation for Monte Carlo Simulation of Surface Systems.- 10.2.1 Introduction to the Monte Carlo Method.- 10.2.2 Results Obtainable via Monte Carlo.- 10.2.3. Comparison to Other Methods for Treating Statistical Systems.- 10.3 Monte Carlo Methods for Lattice Gases P.- 10.3.1 Simulation Mode.- 10.3.2 Microscopic Dynamics.- 10.3.3 Order of Transitions.- 10.4 Monto Carlo Simulation Results.- 10.4.1 Square Lattice Simulations.- 10.4.2 Rectangular Lattice Simulations.- 10.4.3 Triangular Lattice Simulations.- 10.4.4 Hexagonal Lattice Simulations.- 10.5 Summary and Discussion.- References.- 11. Critical Phenomena of Chemisorbed Overlayers.- 11.1 Introduction.- 11.2 Important Concepts.- 11.2.1 Lattice Gas Model.- 11.2.2 Critical Exponents and Scaling Laws.- 11.2.3 Corrections to Scaling.- 11.2.4 Crossover Phenomena [11.22].- 11.2.5 Fisher Renormalization.- 11.3 Universality Classes for Atoms on a 2-d Lattice.- 11.3.1 Order Parameters P.- 11.3.2 Universality Classes.- 11.3.3 Landau Theory for Adlayers.- 11.3.4 Catalogue of Transitions.- 11.3.5 Percolation.- 11.4 LEED on Single Crystal Faces.-11.4.1 Measurement of Exponents.- 11.4.2 Surface Defects.- 11.5 Case Study: 0/Ni{111}.- 11.6 Conclusions and Exhortations.- References.- 12. Structural Defects in Surfaces and Overlayers.- 12.1 Introduction.- 12.2 The Effect of Defects on the Intensity Distribution in Reciprocal Space.- 12.3 Surface Defect Studies Using Low-Energy Electron Diffraction.- 12.4 Surface Defect Studies by Alternative Diffraction Techniques.- 12.5 Summary.- References.- 13. Some Theoretical Aspects of Metal Clusters, Surfaces, and Chemisorption.- 13.1 Intrinsic Properties of Metal Clusters.- 13.1.1 Cluster Density of States.- 13.1.2 Cluster Magnetism.- 13.2 The Interaction of CO with Cu Clusters.- 13.2.1 Cu9C0 Calculations.- 13.2.2 Discussion of Core Level Spectra.- References.- 14. The Inelastic Scattering of Low-Energy Electrons by Surface Excitations; Basic Mechanisms.- 14.1 Introduction.- 14.2 Small-Angle Dipole Scattering.- 14.3 Inelastic Electron Scattering from Surfaces with Large Deflection Angles; The Scattering by Dipole-Inactive Surface Vibrations.- References.- 15. Electronic Aspects of Adsorption Rates.- 15.1 Introduction.- 15.2 The Energy Distribution Function.- 15.3 Derivation of a Boson Formalism.- 15.4 General Features of the Energy Distribution Function.- 15.5 Stochastic Description of the Sticking Process.- 15.6 Quantum-Mechanical Treatment of the Adsorbate Motion.- 15.7 Summary.- Appendix A.- References.- 16. Thermal Desorption.- 16.1 Introduction.- 16.2 Critical Examination of the Usual Procedures.- 16.2.1 Short Description.- 16.2.2 Critique.- 16.3 Experimental Difficulties and Advances.- 16.4 Some Results and Discussion.- 16.5 Conclusions.- References.- 17. Field Desorption and Photon-Induced Field Desorption.- 17.1 Introduction.- 17.2 Field Desorption and Thermal Desorption.- 17.3 Investigations in the Field Ion Microscope.- 17.4 Surface Reactions Investigated by Field Pulse Techniques and Time-of-Flight Mass Spectrometry.- 17.5 Field Ion Appearance Spectroscopy.- 17.6 Electron-Stimulated Field Desorption.- 17.7 Photon-Induced Field Desorption.- 17.7.1 Instrumental Development.- 17.7.2 Electronic Excitation of Adparticles.- 17.7.3 Thermal Activation of Adparticles.- 17.7.4 Surface Diffusion.- 17.7.5 Formation of Complex Ions and Cluster Ions.- 17.8 Summary.- References.- 18. Segregation and Ordering at Alloy Surfaces Studied by Low-Energy Ion Scattering.- 18.1 Introduction.- 18.2 Principles of Surface Segregation.- 18.2.1 General Remarks.- 18.2.2 Regular Solution Theory.- 18.2.3 Influence of Atom Size Difference.- 18.2.4 Miedema's Model.- 18.2.5 Bulk-Phase Diagram Rule.- 18.2.6 Long-Range Order and Segregation.- 18.3 Surface Composition Analysis.- 18.3.1 Low-Energy Ion Scattering.- 18.4 Experimental Results - LEIS.- 18.4.1 Polycrystalline Alloy Surfaces.- 18.4.2 Single Crystal Surfaces.- 18.5 Conclusions.- References.- 19. The Effects of Internal Surface Chemistry on Metallurgical Properties.- 19.1 Introduction.- 19.2 Segregation to Solid-Solid Interfaces.- 19.2.1 Grain Boundaries.- 19.2.2 Particle-Matrix Interfaces.- 19.2.3 Comparison with Surface Segregation.- 19.3 Applications.- 19.3.1 Temper Embrittlement of Steels.- 19.3.2 Ductile Fracture.- 19.3.3 Sensitization of Austenitic Stainless Steels.- 19.3.4 Grain Growth.- 19.4 Summary.- References.
1. Development of Photoemission as a Tool for Surface Science: 1900-1980.- 1.1 Introduction.- 1.2 The Einstein Era: 1900-1930.- 1.3 The Period of Misguided Quantum Mechanics: 1930-1945.- 1.4 The Development of the Correct Fundamental Understanding of the Photoemission Process: 1945-1960.- 1.5 The Development of Photoemission Spectroscopy: 1960-1970.- 1.6 The Explosive Era in Which Photoemission Spectroscopy Was Successfully Applied to the Study of Surfaces: 1970-1980.- 1.7 Conclusions.- References.- 2. Auger Spectroscopy as a Probe of Valence Bonds and Bands.- 2.1 Introduction.- 2.2 Lineshape Description - One-Electron Model.- 2.2.1 Atomic Auger Matrix Elements.- 2.2.2 Local or Mulliken Populations.- 2.3 Localization.- 2.4 Screening.- 2.5 Outlook.- 2.5.1 ESD/PSD.- 2.5.2 AES in the Gas Phase and Chemisorbed Systems.- 2.5.3 AES in the Bulk and at Interfaces.- 2.6 Summary.- References.- 3. SIMS of Reactive Surfaces.- 3.1 Introduction.- 3.2 Single Crystal Metal Surfaces.- 3.2.1 Characteristics of SIMS.- 3.2.2 CO and O2 on Ru{001}.- 3.2.3 Classical Dynamics Modelling.- 3.2.4 Structure from Angle Dependence.- 3.2.5 Reactive Intermediates.- 3.3 Molecular SIMS.- 3.3.1 SIMS of Molecular Solids.- 3.3.2 Thiophene on Silver.- 3.3.3 Inorganic Complexes.- 3.4 Complex Surfaces.- 3.4.1 Proximity.- 3.4.2 Prospects for Catalysis.- 3.5 Conclusions.- References.- 4. Chemisorption Investigated by Ellipsometry.- 4.1 Introduction.- 4.2 Principles of Ellipsometry.- 4.3 (Sub)Monolayer Models.- 4.4 Clean Metal Surfaces.- 4.5 Spectroscopic Ellipsometry of Overlayers.- 4.6 Kinetic Studies of Chemisorption.- 4.6.1 Coverage Calibration.- 4.6.2 Initial Stages of Oxidation.- 4.6.3 Reactions of Adsorbed Oxygen.- References.- 5. The Implications for Surface Science of Doppler-Shift LaserFluorescence Spectroscopy.- 5.1 Introduction.- 5.2 Charge Transfer Processes at Surfaces.- 5.3 Laser Fluorescence Spectroscopic Measurements of Fluxes and Energy Distributions of Sputtered Particles.- References.- 6. Analytical Electron Microscopy in Surface Science.- 6.1 Introduction.- 6.2 Analytical Electron Microscopy Techniques.- 6.3 Scanning Electron Microscopy of Surfaces.- 6.4 Surface Spectroscopies and Microscopy.- 6.4.1 Auger Electron Spectroscopy and Microscopy.- 6.4.2 Secondary Electron Spectroscopy and Work Function Imaging.- 6.4.3 Photoemission and Energy-Loss Spectroscopy.- 6.5 Diffraction Techniques and Microscopy.- 6.5.1 Transmission Electron Diffraction and Microscopy.- 6.5.2 RHEED and Reflection Microscopy.- 6.5.3 LEED and Low-Energy Microscopy.- References.- 7. He Diffraction as a Probe of Semiconductor Surface Structures.- 7.1 Introduction.- 7.2 Si{100}: Disordered Dimer Array.- 7.2.1 Si{100} Periodicity.- 7.2.2 Diffraction Scans and Qualitative Features of the Si{100} Surface.- 7.2.3 Specular Intensities.- 7.2.4 Structural Models for Si{100}.- 7.3 GaAs {110}.- 7.3.1 Diffraction Scans.- 7.3.2 Specular Intensity Scans.- 7.3.3 Rigorous Calculation of Diffraction Intensities.- 7.3.4 The Original of the He/GaAs Potential.- 7.3.5 Computation of Rarified Charge Densities.- 7.3.6 Summary.- 7.4 Si{111} (7×7).- 7.4.1 Diffraction Scans.- 7.4.2 Specular Intensity Interference.- 7.4.3 A Model of the Si{111} (7×7).- 7.4.4 Summary.- References.- 8. Studies of Adsorption at Well-Ordered Electrode Surfaces Using Low-Energy Electron Diffraction.- 8.1 Introduction.- 8.2 Thermodynamics of Electrodeposition.- 8.3 Experimental Methods.- 8.4 Underpotential States of Hydrogen on Pt.- 8.4.1 Isotherms for Hydrogen on {111} and {100} Pt.- 8.4.2 Hydrogen at SteppedSurfaces.- 8.5 Underpotential States of Oxygen on Pt.- 8.6 Underpotential States of Metals on Metals.- 8.7 Relation of the Underpotential State to the Chemisorbed State in Vacuum.- References.- 9. Low-Energy Electron Diffraction Studies of Physically Adsorbed Films.- 9.1 Introduction.- 9.2 Background.- 9.3 LEED Instrument.- 9.4 Krypton on Graphite.- 9.5 Arçon on Graphite.- 9.5.1 Rotational Epitaxy of an Incommensurate Monolayer.- 9.5.2 Thermodynamics of an Incommensurate Monolayer.- 9.5.3 Overlayer-Substrate Spacing for an Incommensurate Monolayer.- 9.6 Nitrogen on Graphite.- 9.7 Conclusions.- References.- 10. Monte Carlo Simulations of Chemisorbed Overlayers.- 10.1 Introduction.- 10.2 Motivation for Monte Carlo Simulation of Surface Systems.- 10.2.1 Introduction to the Monte Carlo Method.- 10.2.2 Results Obtainable via Monte Carlo.- 10.2.3. Comparison to Other Methods for Treating Statistical Systems.- 10.3 Monte Carlo Methods for Lattice Gases P.- 10.3.1 Simulation Mode.- 10.3.2 Microscopic Dynamics.- 10.3.3 Order of Transitions.- 10.4 Monto Carlo Simulation Results.- 10.4.1 Square Lattice Simulations.- 10.4.2 Rectangular Lattice Simulations.- 10.4.3 Triangular Lattice Simulations.- 10.4.4 Hexagonal Lattice Simulations.- 10.5 Summary and Discussion.- References.- 11. Critical Phenomena of Chemisorbed Overlayers.- 11.1 Introduction.- 11.2 Important Concepts.- 11.2.1 Lattice Gas Model.- 11.2.2 Critical Exponents and Scaling Laws.- 11.2.3 Corrections to Scaling.- 11.2.4 Crossover Phenomena [11.22].- 11.2.5 Fisher Renormalization.- 11.3 Universality Classes for Atoms on a 2-d Lattice.- 11.3.1 Order Parameters P.- 11.3.2 Universality Classes.- 11.3.3 Landau Theory for Adlayers.- 11.3.4 Catalogue of Transitions.- 11.3.5 Percolation.- 11.4 LEED on Single Crystal Faces.-11.4.1 Measurement of Exponents.- 11.4.2 Surface Defects.- 11.5 Case Study: 0/Ni{111}.- 11.6 Conclusions and Exhortations.- References.- 12. Structural Defects in Surfaces and Overlayers.- 12.1 Introduction.- 12.2 The Effect of Defects on the Intensity Distribution in Reciprocal Space.- 12.3 Surface Defect Studies Using Low-Energy Electron Diffraction.- 12.4 Surface Defect Studies by Alternative Diffraction Techniques.- 12.5 Summary.- References.- 13. Some Theoretical Aspects of Metal Clusters, Surfaces, and Chemisorption.- 13.1 Intrinsic Properties of Metal Clusters.- 13.1.1 Cluster Density of States.- 13.1.2 Cluster Magnetism.- 13.2 The Interaction of CO with Cu Clusters.- 13.2.1 Cu9C0 Calculations.- 13.2.2 Discussion of Core Level Spectra.- References.- 14. The Inelastic Scattering of Low-Energy Electrons by Surface Excitations; Basic Mechanisms.- 14.1 Introduction.- 14.2 Small-Angle Dipole Scattering.- 14.3 Inelastic Electron Scattering from Surfaces with Large Deflection Angles; The Scattering by Dipole-Inactive Surface Vibrations.- References.- 15. Electronic Aspects of Adsorption Rates.- 15.1 Introduction.- 15.2 The Energy Distribution Function.- 15.3 Derivation of a Boson Formalism.- 15.4 General Features of the Energy Distribution Function.- 15.5 Stochastic Description of the Sticking Process.- 15.6 Quantum-Mechanical Treatment of the Adsorbate Motion.- 15.7 Summary.- Appendix A.- References.- 16. Thermal Desorption.- 16.1 Introduction.- 16.2 Critical Examination of the Usual Procedures.- 16.2.1 Short Description.- 16.2.2 Critique.- 16.3 Experimental Difficulties and Advances.- 16.4 Some Results and Discussion.- 16.5 Conclusions.- References.- 17. Field Desorption and Photon-Induced Field Desorption.- 17.1 Introduction.- 17.2 Field Desorption and Thermal Desorption.- 17.3 Investigations in the Field Ion Microscope.- 17.4 Surface Reactions Investigated by Field Pulse Techniques and Time-of-Flight Mass Spectrometry.- 17.5 Field Ion Appearance Spectroscopy.- 17.6 Electron-Stimulated Field Desorption.- 17.7 Photon-Induced Field Desorption.- 17.7.1 Instrumental Development.- 17.7.2 Electronic Excitation of Adparticles.- 17.7.3 Thermal Activation of Adparticles.- 17.7.4 Surface Diffusion.- 17.7.5 Formation of Complex Ions and Cluster Ions.- 17.8 Summary.- References.- 18. Segregation and Ordering at Alloy Surfaces Studied by Low-Energy Ion Scattering.- 18.1 Introduction.- 18.2 Principles of Surface Segregation.- 18.2.1 General Remarks.- 18.2.2 Regular Solution Theory.- 18.2.3 Influence of Atom Size Difference.- 18.2.4 Miedema's Model.- 18.2.5 Bulk-Phase Diagram Rule.- 18.2.6 Long-Range Order and Segregation.- 18.3 Surface Composition Analysis.- 18.3.1 Low-Energy Ion Scattering.- 18.4 Experimental Results - LEIS.- 18.4.1 Polycrystalline Alloy Surfaces.- 18.4.2 Single Crystal Surfaces.- 18.5 Conclusions.- References.- 19. The Effects of Internal Surface Chemistry on Metallurgical Properties.- 19.1 Introduction.- 19.2 Segregation to Solid-Solid Interfaces.- 19.2.1 Grain Boundaries.- 19.2.2 Particle-Matrix Interfaces.- 19.2.3 Comparison with Surface Segregation.- 19.3 Applications.- 19.3.1 Temper Embrittlement of Steels.- 19.3.2 Ductile Fracture.- 19.3.3 Sensitization of Austenitic Stainless Steels.- 19.3.4 Grain Growth.- 19.4 Summary.- References.