An advanced text for first-year graduate students in physics and engineering taking a standard classical mechanics course.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Introduction 1. Universal laws of nature 2. Lagrange's and Hamilton's equations 3. Flows in phase space 4. Motion in a central potential 5. Small oscillations about equilibria 6. Integrable and chaotic oscillations 7. Parameter-dependent transformations 8. Linear transformations, rotations and rotating frames 9. Rigid body dynamics 10. Lagrangian dynamics and transformations in configuration space 11. Relativity, geometry, and gravity 12. Generalized vs. nonholonomic coordinates 13. Noncanonical flows 14. Damped driven Newtonian systems 15. Hamiltonian dynamics and transformations in phase space 16. Integrable canonical flows 17. Nonintegrable canonical flows 18. Simulations, complexity, and laws of nature.
Introduction 1. Universal laws of nature 2. Lagrange's and Hamilton's equations 3. Flows in phase space 4. Motion in a central potential 5. Small oscillations about equilibria 6. Integrable and chaotic oscillations 7. Parameter-dependent transformations 8. Linear transformations, rotations and rotating frames 9. Rigid body dynamics 10. Lagrangian dynamics and transformations in configuration space 11. Relativity, geometry, and gravity 12. Generalized vs. nonholonomic coordinates 13. Noncanonical flows 14. Damped driven Newtonian systems 15. Hamiltonian dynamics and transformations in phase space 16. Integrable canonical flows 17. Nonintegrable canonical flows 18. Simulations, complexity, and laws of nature.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826