Abner J. Salgado (Knoxville University of Tennessee), Steven M. Wise (Knoxville University of Tennessee)
Classical Numerical Analysis
A Comprehensive Course
Abner J. Salgado (Knoxville University of Tennessee), Steven M. Wise (Knoxville University of Tennessee)
Classical Numerical Analysis
A Comprehensive Course
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A useful resource for graduate students in numerical analysis, this text features a clear and comprehensive exposition on all important topics, simple notation, and an emphasis on theory over implementation. Including classroom-tested problems ranging from simple verification to qualifying exam-level problems.
Andere Kunden interessierten sich auch für
- Azmy S. Ackleh (University of Louisiana, LaFayette, Louisiana, USA)Classical and Modern Numerical Analysis195,99 €
- F. B. HildebrandIntroduction to Numerical Analysis25,99 €
- Gregoire Allaire (, Ecole Polytechnique, France)Numerical Analysis and Optimization88,99 €
- Uri M. AscherA First Course on Numerical Methods116,99 €
- J. C. Butcher (University of Auckland)Numerical Methods for Ordinary DifferentialEquations 3e141,99 €
- Endre Suli (University of Oxford)An Introduction to Numerical Analysis102,99 €
- Arieh Iserles (University of Cambridge)A First Course in the Numerical Analysis of Differential Equations65,99 €
-
-
-
A useful resource for graduate students in numerical analysis, this text features a clear and comprehensive exposition on all important topics, simple notation, and an emphasis on theory over implementation. Including classroom-tested problems ranging from simple verification to qualifying exam-level problems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 937
- Erscheinungstermin: 20. Oktober 2022
- Englisch
- Abmessung: 258mm x 183mm x 54mm
- Gewicht: 1846g
- ISBN-13: 9781108837705
- ISBN-10: 1108837700
- Artikelnr.: 63660416
- Verlag: Cambridge University Press
- Seitenzahl: 937
- Erscheinungstermin: 20. Oktober 2022
- Englisch
- Abmessung: 258mm x 183mm x 54mm
- Gewicht: 1846g
- ISBN-13: 9781108837705
- ISBN-10: 1108837700
- Artikelnr.: 63660416
Abner J. Salgado is Professor of Mathematics at the University of Tennessee, Knoxville. He obtained his PhD in Mathematics in 2010 from Texas A&M University. His main area of research is the numerical analysis of nonlinear partial differential equations, and related questions.
Part I. Numerical Linear Algebra: 1. Linear operators and matrices
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.
Part I. Numerical Linear Algebra: 1. Linear operators and matrices
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.