This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also…mehr
This text explores the connections between different thermodynamic subjects related to fluid systems. Emphasis is placed on the clarification of concepts by returning to the conceptual foundation of thermodynamics and special effort is directed to the use of a simple nomenclature and algebra. The book presents the structural elements of classical thermodynamics of fluid systems, covers the treatment of mixtures, and shows via examples and references both the usefulness and the limitations of classical thermodynamics for the treatment of practical problems related to fluid systems. It also includes diverse selected topics of interest to researchers and advanced students and four practical appendices, including an introduction to material balances and step-by-step procedures for using the Virial EOS and the PRSV EOS for fugacities and the ASOG-KT group method for activity coefficients. The Olivera-Fuentes table of PRSV parameters for more than 800 chemical compounds and the Gmehling-Tochigi tables of ASOG interaction parameters for 43 groups are included.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Juan H. Vera is Professor Emeritus, Department of Chemical Engineering, McGill University, Montreal, Canada. He received his doctorate (Ing. Quim.) from Universidad Tecnica Federico Santa Maria, Chile, and his Master of Science in chemical engineering from University of California, Berkley. He coauthored the first edition of this book, a manual on copper metallurgy (in Spanish), a module in Elsevier Encyclopedia, co-edited the book "Ionic Surfactants and Aqueous Solutions. Biomolecules, Metals and Nanoparticles." (de Gruyter, 2018), and authored more than 200 refereed publications in international journals. He has an international patent on extraction of proteins and a Canadian patent on extraction of heavy metals. During her more than 30-year academic career Grazyna Wilczek-Vera, a chemist, taught and conducted research in various areas of thermodynamics at various universities. She served as Faculty Lecturer and Director of Undergraduate Studies in the Department of Chemistry, as Research Associate in the Department of Chemical Engineering at McGill University, Montreal, Canada, and as Adjunct at the Department of Chemistry, University of Warsaw, Poland. She received the Principal's Prize for Excellence in Teaching, 2008, at McGill University. She received her Doctorate in Chemical Sciences (with Distinction), and Master of Science in Chemistry (with Distinction), from the University of Warsaw. She has authored 60 refereed publications in journals, given 38 conference presentations, and coauthored 3 books. Claudio Olivera-Fuentes is Professor Emeritus in the Thermodynamics and Transport Phenomena Department and Coordinator of Applied Sciences and Engineering in the Dean's Office of Research and Development at Simón Bolívar University in Caracas, Venezuela. He received his Chemical Engineering degree from Universidad Técnica Federico Santa María, Chile, and his M. Sc. in Chemical Engineering from University of Manchester Institute of Science and Technology, UK. He has been Invited Researcher at University of Concepción, Chile, and Visiting Scholar at University of Pennsylvania. He has authored over 120 publications in conference proceedings and scientific journals, three book chapters, and one textbook on vector and tensor analysis applied to Transport Phenomena. Among other recognitions, he received the 2003 Procter & Gamble of Venezuela Award for Excellence in Teaching, and the 2016 Simón Rodríguez Award for Lifetime Academic Achievement. Constantinos Panayiotou is Professor Emeritus, Department of Chemical Engineering, Aristotle University of Thessaloniki, Greece. He received his Doctorate (PhD) from McGill University, Montreal, Canada. He was Visiting Professor at the University of Texas, Austin, and at Ecole Polytechnique Federale, Lausanne, Switzerland and was Otto Monsted Professor at DTU, Denmark. He has published more than 250 peer-reviewed articles in international journals, ten book chapters, two textbooks and has served in editorial boards of ACS and Elsevier Journals.
Inhaltsangabe
Part I: Fundamentals. Basic Concepts and Definitions. The First and Second Laws of Thermodynamics. The Concept of Entropy. Conservation of Energy in an Open Flow System. Definition of Enthalpy. The Algebra of State Functions. The Helmholtz and Gibbs Functions. Calculation of Changes in the Value of Thermodynamic Properties. Part II: Mixtures. Partial Molar Properties and Property Changes by Mixing. The Chemical Potential and the Gibbs-Helmholtz Equation. The Principles of Physical and Chemical Equilibrium. The Phase Rule and Duhem Theorem. Generality of the Thermodynamic Treatment. The Ideal Gas and Ideal Gas Mixtures. The Use of Fugacity and Activity in Equilibrium Studies. Calculation of Fugacities from Equations of State (EOS). Fugacity of a Mixture and of Its Components. Fugacities and Activities in Liquid Mixtures of Non Electrolytes. Activity Coefficients and Excess Properties. Mixture Behavior, Stability and Azeotropy. The Thermodynamics of Aqueous Electrolyte Solutions. Part III: Applications. The Thermodynamics of Chemical Reactions. The Thermodynamics of Equilibrium Based Separation Processes. Heat Effects in Pure Compounds and Mixtures. Adsorption of Gases in Solids. Part IV: Selected Topics. The Thermodynamics of Flow of Compressible Fluids. Elements of Statistical Thermodynamics. Statistical Thermodynamics Basis of Equations of State. Statistical Thermodynamics Basis of Excess Gibbs Functions. The Activity Coefficients of Individual Ions. Measurements and Modeling. Part V: Appendices. Appendix A. Material Balances in Open Flow Systems. Appendix B. Working with the Virial EOS. Appendix C. Working with the PRSV EOS. Appendix D. Working with ASOG-KT.
Part I: Fundamentals. Basic Concepts and Definitions. The First and Second Laws of Thermodynamics. The Concept of Entropy. Conservation of Energy in an Open Flow System. Definition of Enthalpy. The Algebra of State Functions. The Helmholtz and Gibbs Functions. Calculation of Changes in the Value of Thermodynamic Properties. Part II: Mixtures. Partial Molar Properties and Property Changes by Mixing. The Chemical Potential and the Gibbs-Helmholtz Equation. The Principles of Physical and Chemical Equilibrium. The Phase Rule and Duhem Theorem. Generality of the Thermodynamic Treatment. The Ideal Gas and Ideal Gas Mixtures. The Use of Fugacity and Activity in Equilibrium Studies. Calculation of Fugacities from Equations of State (EOS). Fugacity of a Mixture and of Its Components. Fugacities and Activities in Liquid Mixtures of Non Electrolytes. Activity Coefficients and Excess Properties. Mixture Behavior, Stability and Azeotropy. The Thermodynamics of Aqueous Electrolyte Solutions. Part III: Applications. The Thermodynamics of Chemical Reactions. The Thermodynamics of Equilibrium Based Separation Processes. Heat Effects in Pure Compounds and Mixtures. Adsorption of Gases in Solids. Part IV: Selected Topics. The Thermodynamics of Flow of Compressible Fluids. Elements of Statistical Thermodynamics. Statistical Thermodynamics Basis of Equations of State. Statistical Thermodynamics Basis of Excess Gibbs Functions. The Activity Coefficients of Individual Ions. Measurements and Modeling. Part V: Appendices. Appendix A. Material Balances in Open Flow Systems. Appendix B. Working with the Virial EOS. Appendix C. Working with the PRSV EOS. Appendix D. Working with ASOG-KT.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826