Click Chemistry for Biotechnology and Materials Science
Herausgegeben von Lahann, Joerg
Click Chemistry for Biotechnology and Materials Science
Herausgegeben von Lahann, Joerg
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application tothe precise design and synthesis of macromolecules, and itsnumerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trendsand future applications, and provides an important nucleation pointfor research. Edited by one of the top young innovators (accordingto Technology Review) and with contributions from pioneers in thefield, Click Chemistry for Biotechnology and MaterialsScience provides an ideal reference for anyone wanting to learnmore about click reactions.…mehr
Andere Kunden interessierten sich auch für
- Hsiu-Chiung YangEnzyme Technologies191,99 €
- Polypropylene-Based Biocomposites and Bionanocomposites224,99 €
- Susheel KaliaBiopolymers259,99 €
- Postharvest Biology and Nanotechnology230,99 €
- Applied Biocatalysis241,99 €
- Andre StriegelModern Size-Exclusion Liquid Chromatography220,99 €
- Fuels, Chemicals and Materials from the Oceans and Aquatic Sources162,99 €
-
-
-
Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application tothe precise design and synthesis of macromolecules, and itsnumerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trendsand future applications, and provides an important nucleation pointfor research. Edited by one of the top young innovators (accordingto Technology Review) and with contributions from pioneers in thefield, Click Chemistry for Biotechnology and MaterialsScience provides an ideal reference for anyone wanting to learnmore about click reactions.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 432
- Erscheinungstermin: 1. Dezember 2009
- Englisch
- Abmessung: 250mm x 175mm x 28mm
- Gewicht: 1068g
- ISBN-13: 9780470699706
- ISBN-10: 0470699701
- Artikelnr.: 27492602
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley & Sons
- 1. Auflage
- Seitenzahl: 432
- Erscheinungstermin: 1. Dezember 2009
- Englisch
- Abmessung: 250mm x 175mm x 28mm
- Gewicht: 1068g
- ISBN-13: 9780470699706
- ISBN-10: 0470699701
- Artikelnr.: 27492602
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Joerg Lahann is Dow Corning Assistant Professor in the Chemical Engineering Department at the University of Michigan (USA). He was educated at the University of Saarland (Germany) and obtained his PhD at RWTH Aachen (Germany) in Macromolecular Chemistry. From 1999 to 2001, Joerg Lahann was a postdoctoral associate in the Chemical Engineering Department of Massachusetts Institute of Technology (USA) and he then spent one year at Harvard University and Massachusetts Institute of Technology (HMST). He joined the Chemical Engineering Department at the University of Michigan in 2003. Professor Lahann has received a number of honors and awards including Technology Review TR100 Young Innovator Award, NSF CAREER Award, the Justus-Liebig Fellowship of the Fonds of the German Industry, Sigma XI - Full Membership, German Science Foundation Postdoctoral Grant, Borchers Prize of the RWTH Aachen (given to graduate students for an outstanding performance), and the Young Student Achievement Award of the Fonds of the German Industry. His research interests are broadly related to surface engineering as well as biomedical engineering and nanotechnology.
Preface xiii
List of Contributors xv
Acknowledgments xix
1 Click Chemistry: A Universal Ligation Strategy for Biotechnology and
Materials Science 1
Joerg Lahann
1.1 Introduction 1
1.2 Selected Examples of Click Reactions in Materials Science and
Biotechnology 2
1.3 Potential Limitations of Click Chemistry 5
1.4 Conclusions 5
References 6
2 Common Synthons for Click Chemistry in Biotechnology 9
Christine Schilling, Nicole Jung and Stefan Bräse
2.1 Introduction - Click Chemistry 9
2.2 Peptides and Derivatives 10
2.3 Peptoids 12
2.4 Peptidic Dendrimers 13
2.5 Oligonucleotides 14
2.6 Carbohydrates 18
2.7 Conclusion 25
References 26
3 Copper-free Click Chemistry 29
Jeremy M. Baskin and Carolyn R. Bertozzi
3.1 Introduction 29
3.2 Bio-orthogonal Ligations 30
3.2.1 Condensations of Ketones and Aldehydes with Heteroatom-bound Amines
31
3.2.2 Staudinger Ligation of Phosphines and Azides 32
3.2.3 Copper-free Azide-Alkyne Cycloadditions 35
3.2.4 Bioorthogonal Ligations of Alkenes 37
3.3 Applications of Copper-free Click Chemistries 38
3.3.1 Activity-based Profiling of Enzymes 38
3.3.2 Site-specific Labeling of Proteins 39
3.3.3 Metabolic Labeling of Glycans 41
3.3.4 Metabolic Targeting of Other Biomolecules with Chemical Reporters 44
3.4 Summary and Outlook 45
References 46
4 Protein and Peptide Conjugation to Polymers and Surfaces Using Oxime
Chemistry 53
Heather D. Maynard, Rebecca M. Broyer and Christopher M. Kolodziej
4.1 Introduction 53
4.2 Protein/Peptide-Polymer Conjugates 54
4.3 Immobilization of Proteins and Peptides on Surfaces 60
4.4 Conclusions 66
References 67
5 The Role of Click Chemistry in Polymer Synthesis 69
Jean-François Lutz and Brent S. Sumerlin
5.1 Introduction 69
5.2 Polymerization via CuAAC 70
5.3 Post-polymerization Modification via Click Chemistry 72
5.4 Polymer-Biomacromolecule Conjugation 76
5.5 Functional Nanomaterials 81
5.6 Summary and Outlook 83
References 85
6 Blocks, Stars and Combs: Complex Macromolecular Architecture Polymers via
Click Chemistry 89
Sebastian Sinnwell, Andrew J. Inglis, Martina H. Stenzel and Christopher
Barner-Kowollik
6.1 Introduction 89
6.2 Block Copolymers 91
6.2.1 Preparing Polymers for Click Conjugations 92
6.2.2 The Click Reaction: Methodologies and Isolation 96
6.2.3 Polymer Characterization 99
6.3 Star Polymers 101
6.3.1 Star polymers An 101
6.3.2 Dentritic Star Polymers 107
6.4 Graft Copolymers 107
6.4.1 'Grafting-to' Azide Main Chains 109
6.4.2 'Grafting-to' Alkyne Main Chains 111
6.4.3 Non-CuAAC Routes 113
6.5 Concluding Remarks 113
References 113
7 Click Chemistry on Supramolecular Materials 119
Wolfgang H. Binder and Robert Sachsenhofer
7.1 Introduction 119
7.2 Click Reactions on Rotaxanes, Cyclodextrines and Macrocycles 123
7.2.1 Click with Rotaxanes 123
7.2.2 Click on Cyclodextrines 126
7.2.3 Click on Macrocycles 128
7.3 Click Reactions on DNA 131
7.4 Click Reactions on Supramolecular Polymers 138
7.5 Click Reactions on Membranes 143
7.6 Click Reactions on Dendrimers 147
7.7 Click Reactions on Gels and Networks 147
7.8 Click Reactions on Self-assembled Monolayers 153
References 164
8 Dendrimer Synthesis and Functionalization by Click Chemistry for
Biomedical Applications 177
Daniel Q. McNerny, Douglas G. Mullen, Istvan J. Majoros, Mark M. Banaszak
Holl and James R. Baker Jr
8.1 Introduction 177
8.2 Dendrimer Synthesis 181
8.2.1 Divergent Synthesis 181
8.2.2 Convergent Synthesis 183
8.3 Dendrimer Functionalization 184
8.4 Conclusions and Future Directions 189
References 191
9 Reversible Diels-Alder Cycloaddition for the Design of Multifunctional
Network Polymers 195
Amy M. Peterson and Giuseppe R. Palmese
9.1 Introduction 195
9.2 Design of Polymer Networks 198
9.3 Application of Diels-Alder Linkages to Polymer Systems 199
9.3.1 Molecular Weight Control of Linear Polymers 200
9.3.2 Remoldable Crosslinked Materials 202
9.3.3 Thermally Removable Encapsulants 203
9.3.4 Reversibly Crosslinked Polymer-Solvent Gels 203
9.3.5 Remendable Materials 204
9.3.6 Recyclable Thermosets 206
9.3.7 Smart Materials 207
9.4 Conclusions 209
References 209
10 Click Chemistry in the Preparation of Biohybrid Materials 217
Heather J. Kitto, Jan Lauko, Floris P. J. T. Rutjes and Alan E. Rowan
10.1 Introduction 217
10.2 Polymer-containing Biohybrid Materials 218
10.2.1 Polymers from Controlled Techniques 218
10.2.2 Bio-inspired Polymers via Click Chemistry 220
10.3 Biohybrid Structures based on Protein Conjugates 228
10.4 Biohybrid Amphiphiles 232
10.5 Glycoconjugates 236
10.5.1 Carbohydrate Clusters 236
10.5.2 Glycopeptides 238
10.5.3 Glycopolymers 244
10.6 Conclusions 247
References 247
11 Functional Nanomaterials using the Cu-catalyzed Huisgen Cycloaddition
Reaction 255
Sander S. van Berkel, Arnold W.G. Nijhuis, Dennis W.P.M. Löwik and Jan C.M.
van Hest
11.1 Introduction 255
11.2 Inorganic Nanoparticles 256
11.2.1 Silicon-based Nanoparticles 256
11.2.2 Cadmium Selenide-based Nanoparticles 257
11.2.3 Ferric Oxide-based Nanoparticles 257
11.2.4 Gold-based Nanoparticles 261
11.3 Carbon-based Nanomaterials 266
11.3.1 Fullerenes 267
11.3.2 Carbon Nanotubes 269
11.4 Self-assembled Organic Structures 272
11.4.1 Liposomes 274
11.4.2 Polymersomes 275
11.4.3 Micelles and Cross-linked Nanoparticles 278
11.5 Virus Particles 281
11.6 Conclusions 284
References 285
12 Copper-catalyzed 'Click' Chemistry for Surface Engineering 291
Himabindu Nandivada and Joerg Lahann
12.1 Introduction 291
12.2 Synthesis of Alkyne or Azide-functionalized Surfaces 292
12.2.1 Self-assembled Monolayers of Alkanethiolates 292
12.2.2 Self-assembled Monolayers of Silanes and Siloxanes 292
12.2.3 Block Copolymers 294
12.2.4 Layer-by-layer Films 296
12.2.5 Chemical Vapor Deposition Polymerization 297
12.2.6 Fiber Networks 298
12.3 Spatially Controlled Click Chemistry 299
12.4 Copper-catalyzed Click Chemistry for Bioimmobilization 300
12.5 Summary 305
References 305
13 Click Chemistry in Protein Engineering, Design, Detection and Profiling
309
Daniela C. Dieterich and A. James Link
13.1 Introduction 309
13.2 Posttranslational Functionalization of Proteins with Azides and
Alkynes 310
13.3 Cotranslational Functionalization of Proteins with Azides and Alkynes
314
13.4 BONCAT: Identification of Newly Synthesized Proteins via Noncanonical
Amino Acid Tagging 318
13.5 Conclusions and Future Prospects 321
References 322
14 Fluorogenic Copper(I)-catalyzed Azide-Alkyne Cycloaddition Reactions
Reactions and their Applications in Bioconjugation 327
Céline Le Droumaguet and Qian Wang
14.1 Click Reaction for Bioconjugation Applications 327
14.2 Significance of Fluorogenic Reactions in Bioconjugation 328
14.3 CuAAC-based Fluorogenic Reaction 332
14.4 Applications of CuAAC in Bioconjugation 337
14.4.1 Fluorogenic Probing of Cellular Components 339
14.4.2 Fluorogenic Conjugation of DNA 341
14.4.3 Fluorogenic Conjugation of Viruses 344
14.4.4 Fluorogenic Conjugation of Nanoparticles/Polymers 345
14.5 Conclusions 348
References 349
15 Synthesis and Functionalization of Biomolecules via Click Chemistry 355
Christine Schilling, Nicole Jung and Stefan Bräse
15.1 Introduction 355
15.2 Labeling of Macromolecular Biomolecules 356
15.2.1 Fluorescent Labeling 356
15.2.2 Labeling of Bovine Serum Albumin 360
15.2.3 Biotin-labeling of Biomolecules: ABPP 361
15.2.4 Fluorine Labeling 364
15.3 Syntheses of Natural Products and Derivatives 365
15.4 Enzymes and Click Chemistry 368
15.5 Synthesis of Glycosylated Molecular Architectures 371
15.6 Synthesis of Nitrogen-rich Compounds: Polyazides and Triazoles 373
15.7 Conclusions 374
References 375
16 Unprecedented Electro-optic Properties in Polymers and Dendrimers
Enabled by Click Chemistry Based on the Diels-Alder Reactions 379
Jingdong Luo, Tae-Dong Kim and Alex K.-Y. Jen
16.1 Introduction 379
16.2 Diels-Alder Click Chemistry for Highly Efficient Side-chain E-O
Polymers 380
16.3 Diels-Alder Click Chemistry for Crosslinkable E-O Polymers Containing
Binary NLO Chromophores 388
16.4 Diels-Alder Click Chemistry for NLO Dendrimers 392
16.5 Conclusions 394
References 397
Index 399
List of Contributors xv
Acknowledgments xix
1 Click Chemistry: A Universal Ligation Strategy for Biotechnology and
Materials Science 1
Joerg Lahann
1.1 Introduction 1
1.2 Selected Examples of Click Reactions in Materials Science and
Biotechnology 2
1.3 Potential Limitations of Click Chemistry 5
1.4 Conclusions 5
References 6
2 Common Synthons for Click Chemistry in Biotechnology 9
Christine Schilling, Nicole Jung and Stefan Bräse
2.1 Introduction - Click Chemistry 9
2.2 Peptides and Derivatives 10
2.3 Peptoids 12
2.4 Peptidic Dendrimers 13
2.5 Oligonucleotides 14
2.6 Carbohydrates 18
2.7 Conclusion 25
References 26
3 Copper-free Click Chemistry 29
Jeremy M. Baskin and Carolyn R. Bertozzi
3.1 Introduction 29
3.2 Bio-orthogonal Ligations 30
3.2.1 Condensations of Ketones and Aldehydes with Heteroatom-bound Amines
31
3.2.2 Staudinger Ligation of Phosphines and Azides 32
3.2.3 Copper-free Azide-Alkyne Cycloadditions 35
3.2.4 Bioorthogonal Ligations of Alkenes 37
3.3 Applications of Copper-free Click Chemistries 38
3.3.1 Activity-based Profiling of Enzymes 38
3.3.2 Site-specific Labeling of Proteins 39
3.3.3 Metabolic Labeling of Glycans 41
3.3.4 Metabolic Targeting of Other Biomolecules with Chemical Reporters 44
3.4 Summary and Outlook 45
References 46
4 Protein and Peptide Conjugation to Polymers and Surfaces Using Oxime
Chemistry 53
Heather D. Maynard, Rebecca M. Broyer and Christopher M. Kolodziej
4.1 Introduction 53
4.2 Protein/Peptide-Polymer Conjugates 54
4.3 Immobilization of Proteins and Peptides on Surfaces 60
4.4 Conclusions 66
References 67
5 The Role of Click Chemistry in Polymer Synthesis 69
Jean-François Lutz and Brent S. Sumerlin
5.1 Introduction 69
5.2 Polymerization via CuAAC 70
5.3 Post-polymerization Modification via Click Chemistry 72
5.4 Polymer-Biomacromolecule Conjugation 76
5.5 Functional Nanomaterials 81
5.6 Summary and Outlook 83
References 85
6 Blocks, Stars and Combs: Complex Macromolecular Architecture Polymers via
Click Chemistry 89
Sebastian Sinnwell, Andrew J. Inglis, Martina H. Stenzel and Christopher
Barner-Kowollik
6.1 Introduction 89
6.2 Block Copolymers 91
6.2.1 Preparing Polymers for Click Conjugations 92
6.2.2 The Click Reaction: Methodologies and Isolation 96
6.2.3 Polymer Characterization 99
6.3 Star Polymers 101
6.3.1 Star polymers An 101
6.3.2 Dentritic Star Polymers 107
6.4 Graft Copolymers 107
6.4.1 'Grafting-to' Azide Main Chains 109
6.4.2 'Grafting-to' Alkyne Main Chains 111
6.4.3 Non-CuAAC Routes 113
6.5 Concluding Remarks 113
References 113
7 Click Chemistry on Supramolecular Materials 119
Wolfgang H. Binder and Robert Sachsenhofer
7.1 Introduction 119
7.2 Click Reactions on Rotaxanes, Cyclodextrines and Macrocycles 123
7.2.1 Click with Rotaxanes 123
7.2.2 Click on Cyclodextrines 126
7.2.3 Click on Macrocycles 128
7.3 Click Reactions on DNA 131
7.4 Click Reactions on Supramolecular Polymers 138
7.5 Click Reactions on Membranes 143
7.6 Click Reactions on Dendrimers 147
7.7 Click Reactions on Gels and Networks 147
7.8 Click Reactions on Self-assembled Monolayers 153
References 164
8 Dendrimer Synthesis and Functionalization by Click Chemistry for
Biomedical Applications 177
Daniel Q. McNerny, Douglas G. Mullen, Istvan J. Majoros, Mark M. Banaszak
Holl and James R. Baker Jr
8.1 Introduction 177
8.2 Dendrimer Synthesis 181
8.2.1 Divergent Synthesis 181
8.2.2 Convergent Synthesis 183
8.3 Dendrimer Functionalization 184
8.4 Conclusions and Future Directions 189
References 191
9 Reversible Diels-Alder Cycloaddition for the Design of Multifunctional
Network Polymers 195
Amy M. Peterson and Giuseppe R. Palmese
9.1 Introduction 195
9.2 Design of Polymer Networks 198
9.3 Application of Diels-Alder Linkages to Polymer Systems 199
9.3.1 Molecular Weight Control of Linear Polymers 200
9.3.2 Remoldable Crosslinked Materials 202
9.3.3 Thermally Removable Encapsulants 203
9.3.4 Reversibly Crosslinked Polymer-Solvent Gels 203
9.3.5 Remendable Materials 204
9.3.6 Recyclable Thermosets 206
9.3.7 Smart Materials 207
9.4 Conclusions 209
References 209
10 Click Chemistry in the Preparation of Biohybrid Materials 217
Heather J. Kitto, Jan Lauko, Floris P. J. T. Rutjes and Alan E. Rowan
10.1 Introduction 217
10.2 Polymer-containing Biohybrid Materials 218
10.2.1 Polymers from Controlled Techniques 218
10.2.2 Bio-inspired Polymers via Click Chemistry 220
10.3 Biohybrid Structures based on Protein Conjugates 228
10.4 Biohybrid Amphiphiles 232
10.5 Glycoconjugates 236
10.5.1 Carbohydrate Clusters 236
10.5.2 Glycopeptides 238
10.5.3 Glycopolymers 244
10.6 Conclusions 247
References 247
11 Functional Nanomaterials using the Cu-catalyzed Huisgen Cycloaddition
Reaction 255
Sander S. van Berkel, Arnold W.G. Nijhuis, Dennis W.P.M. Löwik and Jan C.M.
van Hest
11.1 Introduction 255
11.2 Inorganic Nanoparticles 256
11.2.1 Silicon-based Nanoparticles 256
11.2.2 Cadmium Selenide-based Nanoparticles 257
11.2.3 Ferric Oxide-based Nanoparticles 257
11.2.4 Gold-based Nanoparticles 261
11.3 Carbon-based Nanomaterials 266
11.3.1 Fullerenes 267
11.3.2 Carbon Nanotubes 269
11.4 Self-assembled Organic Structures 272
11.4.1 Liposomes 274
11.4.2 Polymersomes 275
11.4.3 Micelles and Cross-linked Nanoparticles 278
11.5 Virus Particles 281
11.6 Conclusions 284
References 285
12 Copper-catalyzed 'Click' Chemistry for Surface Engineering 291
Himabindu Nandivada and Joerg Lahann
12.1 Introduction 291
12.2 Synthesis of Alkyne or Azide-functionalized Surfaces 292
12.2.1 Self-assembled Monolayers of Alkanethiolates 292
12.2.2 Self-assembled Monolayers of Silanes and Siloxanes 292
12.2.3 Block Copolymers 294
12.2.4 Layer-by-layer Films 296
12.2.5 Chemical Vapor Deposition Polymerization 297
12.2.6 Fiber Networks 298
12.3 Spatially Controlled Click Chemistry 299
12.4 Copper-catalyzed Click Chemistry for Bioimmobilization 300
12.5 Summary 305
References 305
13 Click Chemistry in Protein Engineering, Design, Detection and Profiling
309
Daniela C. Dieterich and A. James Link
13.1 Introduction 309
13.2 Posttranslational Functionalization of Proteins with Azides and
Alkynes 310
13.3 Cotranslational Functionalization of Proteins with Azides and Alkynes
314
13.4 BONCAT: Identification of Newly Synthesized Proteins via Noncanonical
Amino Acid Tagging 318
13.5 Conclusions and Future Prospects 321
References 322
14 Fluorogenic Copper(I)-catalyzed Azide-Alkyne Cycloaddition Reactions
Reactions and their Applications in Bioconjugation 327
Céline Le Droumaguet and Qian Wang
14.1 Click Reaction for Bioconjugation Applications 327
14.2 Significance of Fluorogenic Reactions in Bioconjugation 328
14.3 CuAAC-based Fluorogenic Reaction 332
14.4 Applications of CuAAC in Bioconjugation 337
14.4.1 Fluorogenic Probing of Cellular Components 339
14.4.2 Fluorogenic Conjugation of DNA 341
14.4.3 Fluorogenic Conjugation of Viruses 344
14.4.4 Fluorogenic Conjugation of Nanoparticles/Polymers 345
14.5 Conclusions 348
References 349
15 Synthesis and Functionalization of Biomolecules via Click Chemistry 355
Christine Schilling, Nicole Jung and Stefan Bräse
15.1 Introduction 355
15.2 Labeling of Macromolecular Biomolecules 356
15.2.1 Fluorescent Labeling 356
15.2.2 Labeling of Bovine Serum Albumin 360
15.2.3 Biotin-labeling of Biomolecules: ABPP 361
15.2.4 Fluorine Labeling 364
15.3 Syntheses of Natural Products and Derivatives 365
15.4 Enzymes and Click Chemistry 368
15.5 Synthesis of Glycosylated Molecular Architectures 371
15.6 Synthesis of Nitrogen-rich Compounds: Polyazides and Triazoles 373
15.7 Conclusions 374
References 375
16 Unprecedented Electro-optic Properties in Polymers and Dendrimers
Enabled by Click Chemistry Based on the Diels-Alder Reactions 379
Jingdong Luo, Tae-Dong Kim and Alex K.-Y. Jen
16.1 Introduction 379
16.2 Diels-Alder Click Chemistry for Highly Efficient Side-chain E-O
Polymers 380
16.3 Diels-Alder Click Chemistry for Crosslinkable E-O Polymers Containing
Binary NLO Chromophores 388
16.4 Diels-Alder Click Chemistry for NLO Dendrimers 392
16.5 Conclusions 394
References 397
Index 399
Preface xiii
List of Contributors xv
Acknowledgments xix
1 Click Chemistry: A Universal Ligation Strategy for Biotechnology and
Materials Science 1
Joerg Lahann
1.1 Introduction 1
1.2 Selected Examples of Click Reactions in Materials Science and
Biotechnology 2
1.3 Potential Limitations of Click Chemistry 5
1.4 Conclusions 5
References 6
2 Common Synthons for Click Chemistry in Biotechnology 9
Christine Schilling, Nicole Jung and Stefan Bräse
2.1 Introduction - Click Chemistry 9
2.2 Peptides and Derivatives 10
2.3 Peptoids 12
2.4 Peptidic Dendrimers 13
2.5 Oligonucleotides 14
2.6 Carbohydrates 18
2.7 Conclusion 25
References 26
3 Copper-free Click Chemistry 29
Jeremy M. Baskin and Carolyn R. Bertozzi
3.1 Introduction 29
3.2 Bio-orthogonal Ligations 30
3.2.1 Condensations of Ketones and Aldehydes with Heteroatom-bound Amines
31
3.2.2 Staudinger Ligation of Phosphines and Azides 32
3.2.3 Copper-free Azide-Alkyne Cycloadditions 35
3.2.4 Bioorthogonal Ligations of Alkenes 37
3.3 Applications of Copper-free Click Chemistries 38
3.3.1 Activity-based Profiling of Enzymes 38
3.3.2 Site-specific Labeling of Proteins 39
3.3.3 Metabolic Labeling of Glycans 41
3.3.4 Metabolic Targeting of Other Biomolecules with Chemical Reporters 44
3.4 Summary and Outlook 45
References 46
4 Protein and Peptide Conjugation to Polymers and Surfaces Using Oxime
Chemistry 53
Heather D. Maynard, Rebecca M. Broyer and Christopher M. Kolodziej
4.1 Introduction 53
4.2 Protein/Peptide-Polymer Conjugates 54
4.3 Immobilization of Proteins and Peptides on Surfaces 60
4.4 Conclusions 66
References 67
5 The Role of Click Chemistry in Polymer Synthesis 69
Jean-François Lutz and Brent S. Sumerlin
5.1 Introduction 69
5.2 Polymerization via CuAAC 70
5.3 Post-polymerization Modification via Click Chemistry 72
5.4 Polymer-Biomacromolecule Conjugation 76
5.5 Functional Nanomaterials 81
5.6 Summary and Outlook 83
References 85
6 Blocks, Stars and Combs: Complex Macromolecular Architecture Polymers via
Click Chemistry 89
Sebastian Sinnwell, Andrew J. Inglis, Martina H. Stenzel and Christopher
Barner-Kowollik
6.1 Introduction 89
6.2 Block Copolymers 91
6.2.1 Preparing Polymers for Click Conjugations 92
6.2.2 The Click Reaction: Methodologies and Isolation 96
6.2.3 Polymer Characterization 99
6.3 Star Polymers 101
6.3.1 Star polymers An 101
6.3.2 Dentritic Star Polymers 107
6.4 Graft Copolymers 107
6.4.1 'Grafting-to' Azide Main Chains 109
6.4.2 'Grafting-to' Alkyne Main Chains 111
6.4.3 Non-CuAAC Routes 113
6.5 Concluding Remarks 113
References 113
7 Click Chemistry on Supramolecular Materials 119
Wolfgang H. Binder and Robert Sachsenhofer
7.1 Introduction 119
7.2 Click Reactions on Rotaxanes, Cyclodextrines and Macrocycles 123
7.2.1 Click with Rotaxanes 123
7.2.2 Click on Cyclodextrines 126
7.2.3 Click on Macrocycles 128
7.3 Click Reactions on DNA 131
7.4 Click Reactions on Supramolecular Polymers 138
7.5 Click Reactions on Membranes 143
7.6 Click Reactions on Dendrimers 147
7.7 Click Reactions on Gels and Networks 147
7.8 Click Reactions on Self-assembled Monolayers 153
References 164
8 Dendrimer Synthesis and Functionalization by Click Chemistry for
Biomedical Applications 177
Daniel Q. McNerny, Douglas G. Mullen, Istvan J. Majoros, Mark M. Banaszak
Holl and James R. Baker Jr
8.1 Introduction 177
8.2 Dendrimer Synthesis 181
8.2.1 Divergent Synthesis 181
8.2.2 Convergent Synthesis 183
8.3 Dendrimer Functionalization 184
8.4 Conclusions and Future Directions 189
References 191
9 Reversible Diels-Alder Cycloaddition for the Design of Multifunctional
Network Polymers 195
Amy M. Peterson and Giuseppe R. Palmese
9.1 Introduction 195
9.2 Design of Polymer Networks 198
9.3 Application of Diels-Alder Linkages to Polymer Systems 199
9.3.1 Molecular Weight Control of Linear Polymers 200
9.3.2 Remoldable Crosslinked Materials 202
9.3.3 Thermally Removable Encapsulants 203
9.3.4 Reversibly Crosslinked Polymer-Solvent Gels 203
9.3.5 Remendable Materials 204
9.3.6 Recyclable Thermosets 206
9.3.7 Smart Materials 207
9.4 Conclusions 209
References 209
10 Click Chemistry in the Preparation of Biohybrid Materials 217
Heather J. Kitto, Jan Lauko, Floris P. J. T. Rutjes and Alan E. Rowan
10.1 Introduction 217
10.2 Polymer-containing Biohybrid Materials 218
10.2.1 Polymers from Controlled Techniques 218
10.2.2 Bio-inspired Polymers via Click Chemistry 220
10.3 Biohybrid Structures based on Protein Conjugates 228
10.4 Biohybrid Amphiphiles 232
10.5 Glycoconjugates 236
10.5.1 Carbohydrate Clusters 236
10.5.2 Glycopeptides 238
10.5.3 Glycopolymers 244
10.6 Conclusions 247
References 247
11 Functional Nanomaterials using the Cu-catalyzed Huisgen Cycloaddition
Reaction 255
Sander S. van Berkel, Arnold W.G. Nijhuis, Dennis W.P.M. Löwik and Jan C.M.
van Hest
11.1 Introduction 255
11.2 Inorganic Nanoparticles 256
11.2.1 Silicon-based Nanoparticles 256
11.2.2 Cadmium Selenide-based Nanoparticles 257
11.2.3 Ferric Oxide-based Nanoparticles 257
11.2.4 Gold-based Nanoparticles 261
11.3 Carbon-based Nanomaterials 266
11.3.1 Fullerenes 267
11.3.2 Carbon Nanotubes 269
11.4 Self-assembled Organic Structures 272
11.4.1 Liposomes 274
11.4.2 Polymersomes 275
11.4.3 Micelles and Cross-linked Nanoparticles 278
11.5 Virus Particles 281
11.6 Conclusions 284
References 285
12 Copper-catalyzed 'Click' Chemistry for Surface Engineering 291
Himabindu Nandivada and Joerg Lahann
12.1 Introduction 291
12.2 Synthesis of Alkyne or Azide-functionalized Surfaces 292
12.2.1 Self-assembled Monolayers of Alkanethiolates 292
12.2.2 Self-assembled Monolayers of Silanes and Siloxanes 292
12.2.3 Block Copolymers 294
12.2.4 Layer-by-layer Films 296
12.2.5 Chemical Vapor Deposition Polymerization 297
12.2.6 Fiber Networks 298
12.3 Spatially Controlled Click Chemistry 299
12.4 Copper-catalyzed Click Chemistry for Bioimmobilization 300
12.5 Summary 305
References 305
13 Click Chemistry in Protein Engineering, Design, Detection and Profiling
309
Daniela C. Dieterich and A. James Link
13.1 Introduction 309
13.2 Posttranslational Functionalization of Proteins with Azides and
Alkynes 310
13.3 Cotranslational Functionalization of Proteins with Azides and Alkynes
314
13.4 BONCAT: Identification of Newly Synthesized Proteins via Noncanonical
Amino Acid Tagging 318
13.5 Conclusions and Future Prospects 321
References 322
14 Fluorogenic Copper(I)-catalyzed Azide-Alkyne Cycloaddition Reactions
Reactions and their Applications in Bioconjugation 327
Céline Le Droumaguet and Qian Wang
14.1 Click Reaction for Bioconjugation Applications 327
14.2 Significance of Fluorogenic Reactions in Bioconjugation 328
14.3 CuAAC-based Fluorogenic Reaction 332
14.4 Applications of CuAAC in Bioconjugation 337
14.4.1 Fluorogenic Probing of Cellular Components 339
14.4.2 Fluorogenic Conjugation of DNA 341
14.4.3 Fluorogenic Conjugation of Viruses 344
14.4.4 Fluorogenic Conjugation of Nanoparticles/Polymers 345
14.5 Conclusions 348
References 349
15 Synthesis and Functionalization of Biomolecules via Click Chemistry 355
Christine Schilling, Nicole Jung and Stefan Bräse
15.1 Introduction 355
15.2 Labeling of Macromolecular Biomolecules 356
15.2.1 Fluorescent Labeling 356
15.2.2 Labeling of Bovine Serum Albumin 360
15.2.3 Biotin-labeling of Biomolecules: ABPP 361
15.2.4 Fluorine Labeling 364
15.3 Syntheses of Natural Products and Derivatives 365
15.4 Enzymes and Click Chemistry 368
15.5 Synthesis of Glycosylated Molecular Architectures 371
15.6 Synthesis of Nitrogen-rich Compounds: Polyazides and Triazoles 373
15.7 Conclusions 374
References 375
16 Unprecedented Electro-optic Properties in Polymers and Dendrimers
Enabled by Click Chemistry Based on the Diels-Alder Reactions 379
Jingdong Luo, Tae-Dong Kim and Alex K.-Y. Jen
16.1 Introduction 379
16.2 Diels-Alder Click Chemistry for Highly Efficient Side-chain E-O
Polymers 380
16.3 Diels-Alder Click Chemistry for Crosslinkable E-O Polymers Containing
Binary NLO Chromophores 388
16.4 Diels-Alder Click Chemistry for NLO Dendrimers 392
16.5 Conclusions 394
References 397
Index 399
List of Contributors xv
Acknowledgments xix
1 Click Chemistry: A Universal Ligation Strategy for Biotechnology and
Materials Science 1
Joerg Lahann
1.1 Introduction 1
1.2 Selected Examples of Click Reactions in Materials Science and
Biotechnology 2
1.3 Potential Limitations of Click Chemistry 5
1.4 Conclusions 5
References 6
2 Common Synthons for Click Chemistry in Biotechnology 9
Christine Schilling, Nicole Jung and Stefan Bräse
2.1 Introduction - Click Chemistry 9
2.2 Peptides and Derivatives 10
2.3 Peptoids 12
2.4 Peptidic Dendrimers 13
2.5 Oligonucleotides 14
2.6 Carbohydrates 18
2.7 Conclusion 25
References 26
3 Copper-free Click Chemistry 29
Jeremy M. Baskin and Carolyn R. Bertozzi
3.1 Introduction 29
3.2 Bio-orthogonal Ligations 30
3.2.1 Condensations of Ketones and Aldehydes with Heteroatom-bound Amines
31
3.2.2 Staudinger Ligation of Phosphines and Azides 32
3.2.3 Copper-free Azide-Alkyne Cycloadditions 35
3.2.4 Bioorthogonal Ligations of Alkenes 37
3.3 Applications of Copper-free Click Chemistries 38
3.3.1 Activity-based Profiling of Enzymes 38
3.3.2 Site-specific Labeling of Proteins 39
3.3.3 Metabolic Labeling of Glycans 41
3.3.4 Metabolic Targeting of Other Biomolecules with Chemical Reporters 44
3.4 Summary and Outlook 45
References 46
4 Protein and Peptide Conjugation to Polymers and Surfaces Using Oxime
Chemistry 53
Heather D. Maynard, Rebecca M. Broyer and Christopher M. Kolodziej
4.1 Introduction 53
4.2 Protein/Peptide-Polymer Conjugates 54
4.3 Immobilization of Proteins and Peptides on Surfaces 60
4.4 Conclusions 66
References 67
5 The Role of Click Chemistry in Polymer Synthesis 69
Jean-François Lutz and Brent S. Sumerlin
5.1 Introduction 69
5.2 Polymerization via CuAAC 70
5.3 Post-polymerization Modification via Click Chemistry 72
5.4 Polymer-Biomacromolecule Conjugation 76
5.5 Functional Nanomaterials 81
5.6 Summary and Outlook 83
References 85
6 Blocks, Stars and Combs: Complex Macromolecular Architecture Polymers via
Click Chemistry 89
Sebastian Sinnwell, Andrew J. Inglis, Martina H. Stenzel and Christopher
Barner-Kowollik
6.1 Introduction 89
6.2 Block Copolymers 91
6.2.1 Preparing Polymers for Click Conjugations 92
6.2.2 The Click Reaction: Methodologies and Isolation 96
6.2.3 Polymer Characterization 99
6.3 Star Polymers 101
6.3.1 Star polymers An 101
6.3.2 Dentritic Star Polymers 107
6.4 Graft Copolymers 107
6.4.1 'Grafting-to' Azide Main Chains 109
6.4.2 'Grafting-to' Alkyne Main Chains 111
6.4.3 Non-CuAAC Routes 113
6.5 Concluding Remarks 113
References 113
7 Click Chemistry on Supramolecular Materials 119
Wolfgang H. Binder and Robert Sachsenhofer
7.1 Introduction 119
7.2 Click Reactions on Rotaxanes, Cyclodextrines and Macrocycles 123
7.2.1 Click with Rotaxanes 123
7.2.2 Click on Cyclodextrines 126
7.2.3 Click on Macrocycles 128
7.3 Click Reactions on DNA 131
7.4 Click Reactions on Supramolecular Polymers 138
7.5 Click Reactions on Membranes 143
7.6 Click Reactions on Dendrimers 147
7.7 Click Reactions on Gels and Networks 147
7.8 Click Reactions on Self-assembled Monolayers 153
References 164
8 Dendrimer Synthesis and Functionalization by Click Chemistry for
Biomedical Applications 177
Daniel Q. McNerny, Douglas G. Mullen, Istvan J. Majoros, Mark M. Banaszak
Holl and James R. Baker Jr
8.1 Introduction 177
8.2 Dendrimer Synthesis 181
8.2.1 Divergent Synthesis 181
8.2.2 Convergent Synthesis 183
8.3 Dendrimer Functionalization 184
8.4 Conclusions and Future Directions 189
References 191
9 Reversible Diels-Alder Cycloaddition for the Design of Multifunctional
Network Polymers 195
Amy M. Peterson and Giuseppe R. Palmese
9.1 Introduction 195
9.2 Design of Polymer Networks 198
9.3 Application of Diels-Alder Linkages to Polymer Systems 199
9.3.1 Molecular Weight Control of Linear Polymers 200
9.3.2 Remoldable Crosslinked Materials 202
9.3.3 Thermally Removable Encapsulants 203
9.3.4 Reversibly Crosslinked Polymer-Solvent Gels 203
9.3.5 Remendable Materials 204
9.3.6 Recyclable Thermosets 206
9.3.7 Smart Materials 207
9.4 Conclusions 209
References 209
10 Click Chemistry in the Preparation of Biohybrid Materials 217
Heather J. Kitto, Jan Lauko, Floris P. J. T. Rutjes and Alan E. Rowan
10.1 Introduction 217
10.2 Polymer-containing Biohybrid Materials 218
10.2.1 Polymers from Controlled Techniques 218
10.2.2 Bio-inspired Polymers via Click Chemistry 220
10.3 Biohybrid Structures based on Protein Conjugates 228
10.4 Biohybrid Amphiphiles 232
10.5 Glycoconjugates 236
10.5.1 Carbohydrate Clusters 236
10.5.2 Glycopeptides 238
10.5.3 Glycopolymers 244
10.6 Conclusions 247
References 247
11 Functional Nanomaterials using the Cu-catalyzed Huisgen Cycloaddition
Reaction 255
Sander S. van Berkel, Arnold W.G. Nijhuis, Dennis W.P.M. Löwik and Jan C.M.
van Hest
11.1 Introduction 255
11.2 Inorganic Nanoparticles 256
11.2.1 Silicon-based Nanoparticles 256
11.2.2 Cadmium Selenide-based Nanoparticles 257
11.2.3 Ferric Oxide-based Nanoparticles 257
11.2.4 Gold-based Nanoparticles 261
11.3 Carbon-based Nanomaterials 266
11.3.1 Fullerenes 267
11.3.2 Carbon Nanotubes 269
11.4 Self-assembled Organic Structures 272
11.4.1 Liposomes 274
11.4.2 Polymersomes 275
11.4.3 Micelles and Cross-linked Nanoparticles 278
11.5 Virus Particles 281
11.6 Conclusions 284
References 285
12 Copper-catalyzed 'Click' Chemistry for Surface Engineering 291
Himabindu Nandivada and Joerg Lahann
12.1 Introduction 291
12.2 Synthesis of Alkyne or Azide-functionalized Surfaces 292
12.2.1 Self-assembled Monolayers of Alkanethiolates 292
12.2.2 Self-assembled Monolayers of Silanes and Siloxanes 292
12.2.3 Block Copolymers 294
12.2.4 Layer-by-layer Films 296
12.2.5 Chemical Vapor Deposition Polymerization 297
12.2.6 Fiber Networks 298
12.3 Spatially Controlled Click Chemistry 299
12.4 Copper-catalyzed Click Chemistry for Bioimmobilization 300
12.5 Summary 305
References 305
13 Click Chemistry in Protein Engineering, Design, Detection and Profiling
309
Daniela C. Dieterich and A. James Link
13.1 Introduction 309
13.2 Posttranslational Functionalization of Proteins with Azides and
Alkynes 310
13.3 Cotranslational Functionalization of Proteins with Azides and Alkynes
314
13.4 BONCAT: Identification of Newly Synthesized Proteins via Noncanonical
Amino Acid Tagging 318
13.5 Conclusions and Future Prospects 321
References 322
14 Fluorogenic Copper(I)-catalyzed Azide-Alkyne Cycloaddition Reactions
Reactions and their Applications in Bioconjugation 327
Céline Le Droumaguet and Qian Wang
14.1 Click Reaction for Bioconjugation Applications 327
14.2 Significance of Fluorogenic Reactions in Bioconjugation 328
14.3 CuAAC-based Fluorogenic Reaction 332
14.4 Applications of CuAAC in Bioconjugation 337
14.4.1 Fluorogenic Probing of Cellular Components 339
14.4.2 Fluorogenic Conjugation of DNA 341
14.4.3 Fluorogenic Conjugation of Viruses 344
14.4.4 Fluorogenic Conjugation of Nanoparticles/Polymers 345
14.5 Conclusions 348
References 349
15 Synthesis and Functionalization of Biomolecules via Click Chemistry 355
Christine Schilling, Nicole Jung and Stefan Bräse
15.1 Introduction 355
15.2 Labeling of Macromolecular Biomolecules 356
15.2.1 Fluorescent Labeling 356
15.2.2 Labeling of Bovine Serum Albumin 360
15.2.3 Biotin-labeling of Biomolecules: ABPP 361
15.2.4 Fluorine Labeling 364
15.3 Syntheses of Natural Products and Derivatives 365
15.4 Enzymes and Click Chemistry 368
15.5 Synthesis of Glycosylated Molecular Architectures 371
15.6 Synthesis of Nitrogen-rich Compounds: Polyazides and Triazoles 373
15.7 Conclusions 374
References 375
16 Unprecedented Electro-optic Properties in Polymers and Dendrimers
Enabled by Click Chemistry Based on the Diels-Alder Reactions 379
Jingdong Luo, Tae-Dong Kim and Alex K.-Y. Jen
16.1 Introduction 379
16.2 Diels-Alder Click Chemistry for Highly Efficient Side-chain E-O
Polymers 380
16.3 Diels-Alder Click Chemistry for Crosslinkable E-O Polymers Containing
Binary NLO Chromophores 388
16.4 Diels-Alder Click Chemistry for NLO Dendrimers 392
16.5 Conclusions 394
References 397
Index 399