Richard Dybowski / Vanya Gant (eds.)
Clinical Applications of Artificial Neural Networks
Herausgeber: Dybowski, Richard; Gant, Vanya
Richard Dybowski / Vanya Gant (eds.)
Clinical Applications of Artificial Neural Networks
Herausgeber: Dybowski, Richard; Gant, Vanya
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Summarizes the power of artificial neural networks in the investigation and treatment of disease.
Andere Kunden interessierten sich auch für
- Richard Dybowski / Vanya Gant (eds.)Clinical Applications of Artificial Neural Networks127,99 €
- Artificial Neural Networks for IoT-Enabled Smart Applications100,99 €
- Sara MoeinMedical Diagnosis Using Artificial Neural Networks228,99 €
- Dr Shabnam SayyadArtificial Neural Networks Algorithm for Diagnosis of Human Hair loss57,99 €
- Neural Networks in Healthcare97,99 €
- Innovative Topologies and Algorithms for Neural Networks73,99 €
- Sensor Networks and Systems for Healthcare Applications161,99 €
-
-
-
Summarizes the power of artificial neural networks in the investigation and treatment of disease.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 380
- Erscheinungstermin: 22. Juni 2016
- Englisch
- Abmessung: 250mm x 175mm x 25mm
- Gewicht: 834g
- ISBN-13: 9780521662710
- ISBN-10: 0521662710
- Artikelnr.: 22192453
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 380
- Erscheinungstermin: 22. Juni 2016
- Englisch
- Abmessung: 250mm x 175mm x 25mm
- Gewicht: 834g
- ISBN-13: 9780521662710
- ISBN-10: 0521662710
- Artikelnr.: 22192453
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
List of contributors; 1. Introduction Richard Dybowski and Vanya Gant; Part
I. Applications: 2. Artificial neural networks in laboratory medicine Simon
S. Cross; 3. Using artificial neural networks to screen cervical smears:
how new technology enhances health care Mathilde E. Boon and Lambrecht P.
Kok; 4. Neural network analysis of sleep disorders Lionel Tarassenko,
Mayela Zamora and James Pardey; 5. Artificial neural networks for neonatal
intensive care Emma A. Braithwaite, Jimmy Dripps, Andrew J. Lyon and Alan
Murray; 6. Artificial neural networks in urology: applications, feature
extraction and user implementations Craig S. Niederberger and Richard M.
Golden; 7. Artificial neural networks as a tool for whole organism
fingerprinting in bacterial taxonomy Royston Goodacre; Part II. Prospects:
8. Recent advances in EEG signal analysis and classification Charles W.
Anderson and David A. Peterson; 9. Adaptive resonance theory: a foundation
for 'apprentice' systems in clinical decision support? Robert F. Harrison,
Simon S. Cross, R. Lee Kennedy, Chee Peng Lim and Joseph Downs; 10.
Evolving artificial neural networks V. William Porto and David B. Fogel;
Part III. Theory: 11. Neural networks as statistical methods in survival
analysis Brian D. Ripley and Ruth M. Ripley; 12. A review of techniques for
extracting rules from trained artificial neural networks Robert Andrews,
Alan B. Tickle and Joachim Diederich; 13. Confidence intervals and
prediction intervals for feedforward neural networks Richard Dybowski and
Stephen J. Roberts; Part IV. Ethics and Clinical Prospects: 14. Artificial
neural networks: practical considerations for clinical application Vanya
Gant, Susan Rodway and Jeremy Wyatt; Index.
I. Applications: 2. Artificial neural networks in laboratory medicine Simon
S. Cross; 3. Using artificial neural networks to screen cervical smears:
how new technology enhances health care Mathilde E. Boon and Lambrecht P.
Kok; 4. Neural network analysis of sleep disorders Lionel Tarassenko,
Mayela Zamora and James Pardey; 5. Artificial neural networks for neonatal
intensive care Emma A. Braithwaite, Jimmy Dripps, Andrew J. Lyon and Alan
Murray; 6. Artificial neural networks in urology: applications, feature
extraction and user implementations Craig S. Niederberger and Richard M.
Golden; 7. Artificial neural networks as a tool for whole organism
fingerprinting in bacterial taxonomy Royston Goodacre; Part II. Prospects:
8. Recent advances in EEG signal analysis and classification Charles W.
Anderson and David A. Peterson; 9. Adaptive resonance theory: a foundation
for 'apprentice' systems in clinical decision support? Robert F. Harrison,
Simon S. Cross, R. Lee Kennedy, Chee Peng Lim and Joseph Downs; 10.
Evolving artificial neural networks V. William Porto and David B. Fogel;
Part III. Theory: 11. Neural networks as statistical methods in survival
analysis Brian D. Ripley and Ruth M. Ripley; 12. A review of techniques for
extracting rules from trained artificial neural networks Robert Andrews,
Alan B. Tickle and Joachim Diederich; 13. Confidence intervals and
prediction intervals for feedforward neural networks Richard Dybowski and
Stephen J. Roberts; Part IV. Ethics and Clinical Prospects: 14. Artificial
neural networks: practical considerations for clinical application Vanya
Gant, Susan Rodway and Jeremy Wyatt; Index.
List of contributors; 1. Introduction Richard Dybowski and Vanya Gant; Part
I. Applications: 2. Artificial neural networks in laboratory medicine Simon
S. Cross; 3. Using artificial neural networks to screen cervical smears:
how new technology enhances health care Mathilde E. Boon and Lambrecht P.
Kok; 4. Neural network analysis of sleep disorders Lionel Tarassenko,
Mayela Zamora and James Pardey; 5. Artificial neural networks for neonatal
intensive care Emma A. Braithwaite, Jimmy Dripps, Andrew J. Lyon and Alan
Murray; 6. Artificial neural networks in urology: applications, feature
extraction and user implementations Craig S. Niederberger and Richard M.
Golden; 7. Artificial neural networks as a tool for whole organism
fingerprinting in bacterial taxonomy Royston Goodacre; Part II. Prospects:
8. Recent advances in EEG signal analysis and classification Charles W.
Anderson and David A. Peterson; 9. Adaptive resonance theory: a foundation
for 'apprentice' systems in clinical decision support? Robert F. Harrison,
Simon S. Cross, R. Lee Kennedy, Chee Peng Lim and Joseph Downs; 10.
Evolving artificial neural networks V. William Porto and David B. Fogel;
Part III. Theory: 11. Neural networks as statistical methods in survival
analysis Brian D. Ripley and Ruth M. Ripley; 12. A review of techniques for
extracting rules from trained artificial neural networks Robert Andrews,
Alan B. Tickle and Joachim Diederich; 13. Confidence intervals and
prediction intervals for feedforward neural networks Richard Dybowski and
Stephen J. Roberts; Part IV. Ethics and Clinical Prospects: 14. Artificial
neural networks: practical considerations for clinical application Vanya
Gant, Susan Rodway and Jeremy Wyatt; Index.
I. Applications: 2. Artificial neural networks in laboratory medicine Simon
S. Cross; 3. Using artificial neural networks to screen cervical smears:
how new technology enhances health care Mathilde E. Boon and Lambrecht P.
Kok; 4. Neural network analysis of sleep disorders Lionel Tarassenko,
Mayela Zamora and James Pardey; 5. Artificial neural networks for neonatal
intensive care Emma A. Braithwaite, Jimmy Dripps, Andrew J. Lyon and Alan
Murray; 6. Artificial neural networks in urology: applications, feature
extraction and user implementations Craig S. Niederberger and Richard M.
Golden; 7. Artificial neural networks as a tool for whole organism
fingerprinting in bacterial taxonomy Royston Goodacre; Part II. Prospects:
8. Recent advances in EEG signal analysis and classification Charles W.
Anderson and David A. Peterson; 9. Adaptive resonance theory: a foundation
for 'apprentice' systems in clinical decision support? Robert F. Harrison,
Simon S. Cross, R. Lee Kennedy, Chee Peng Lim and Joseph Downs; 10.
Evolving artificial neural networks V. William Porto and David B. Fogel;
Part III. Theory: 11. Neural networks as statistical methods in survival
analysis Brian D. Ripley and Ruth M. Ripley; 12. A review of techniques for
extracting rules from trained artificial neural networks Robert Andrews,
Alan B. Tickle and Joachim Diederich; 13. Confidence intervals and
prediction intervals for feedforward neural networks Richard Dybowski and
Stephen J. Roberts; Part IV. Ethics and Clinical Prospects: 14. Artificial
neural networks: practical considerations for clinical application Vanya
Gant, Susan Rodway and Jeremy Wyatt; Index.