49,95 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Gebundenes Buch

Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 führt ein in die Clusteranalyse. Nach einem intuitiven Beispiel anhand des Clusterns von Muscheln am Strand, und dem zugrundeliegenden, oft unausgesprochenen Cluster-Prinzipien werden u.a. die hierarchische, partitionierende und das TwoStep-Verfahren vorgestellt. Bei der hierarchischen Clusteranalyse (CLUSTER) werden die diversen Maße (z.B. quadrierte euklidische Distanz, Pearson-Korrelation, Chi²-Maß etc.) und die jeweiligen Algorithmen (Density, Linkage, Ward etc.) einschl.…mehr

Produktbeschreibung
Dieses Buch führt ein in die grundlegenden Ansätze des Clusterns, Segmentierens und der Faktorextraktion. Kapitel 1 führt ein in die Clusteranalyse. Nach einem intuitiven Beispiel anhand des Clusterns von Muscheln am Strand, und dem zugrundeliegenden, oft unausgesprochenen Cluster-Prinzipien werden u.a. die hierarchische, partitionierende und das TwoStep-Verfahren vorgestellt. Bei der hierarchischen Clusteranalyse (CLUSTER) werden die diversen Maße (z.B. quadrierte euklidische Distanz, Pearson-Korrelation, Chi²-Maß etc.) und die jeweiligen Algorithmen (Density, Linkage, Ward etc.) einschl. ihrer Bias (z.B. Ausreißer, Chaining) erläutert. Anhand zahlreicher Beispiele wird erläutert, wie Intervalldaten, Häufigkeiten, Kategorialdaten, sowie gemischte Daten geclustert werden. Bei der partitionierenden Clusterzentrenanalyse (k-means, QUICK CLUSTER) lernen Sie Teststatistiken zur Bestimmung der optimalen Clusterzahl kennen (z.B. Eta², F-max; nicht im original SPSS Leistungsumfang enthalten), sowie die ausgewählte Clusterlösung auf Interpretierbarkeit, Stabilität und Validität zu prüfen. Bei der Two-Step Clusteranalyse (TWOSTEP CLUSTER) lernen Sie die Clusterung von gemischten Daten anhand eines Scoring-Algorithmus kennen Darüber hinaus lernen Sie Kriterien für die Beurteilung einer guten Clusterlösung kennen, wie auch alternative grafische und logische Ansätze zur Clusterung von auch Daten im String-Format. Kapitel 2 führt ein in die Gruppe der Faktorenanalyse mit SPSS. Die Faktorenanalyse (factor analysis, FA) ist ein Sammelbegriff für verschiedene Verfahren, die es ermöglichen, aus einer großen Zahl von Variablen eine möglichst geringe Anzahl von (nicht beobachteten) 'Faktoren' zu erhalten ('extrahieren'). Die Faktorenanalyse geht nicht von unabhängigen oder abhängigen Variablen aus, sondern behandelt alle Analysevariablen unabhängig von einem Kausalitätsstatus. Dieser Kurs führt in das Grundprinzip und Varianten der Faktorenanalyse (z.B. Alpha, Hauptfaktoren, Hauptkomponenten), die wichtigsten Extraktions-, wie auch Rotationsmethoden (z.B. orthogonal vs. oblique) und ihre Funktion. Vorgestellt werden Kriterien zur Bestimmung, Interpretation und Benennung der Faktoren. Dieser Kurs stellt ausschließlich die Variante der explorativen Faktorenanalyse (EFA) vor (R-Typ). Abschliessend werden eine Faktorenanalyse für Fälle (Q-Typ Faktorenanalyse vorgestellt, sowie eine Matrix-Variante, die dann zum Einsatz kommen kann, wenn die korrelationsanalytischen Voraussetzungen der Faktorenanalyse nicht erfüllt sind. Die Überprüfung der Voraussetzungen und die Interpretation der Statistiken werden an zahlreichen Beispielen geübt. Kapitel 3 stellt die Diskriminanzanalyse (DA, syn.: DFA, Diskriminanzfunktionsanalyse) vor. Das zentrale Ziel dieses Ansatzes ist, die beste Trennung (Diskriminanz) zwischen den Zugehörigkeiten einer abhängigen Gruppenvariable für mehrere unabhängige Einflussvariablen zu finden. In anderen Worten, die Diskriminanzanalyse liefert die Antwort auf die Frage: Welche Kombination von Einflussvariablen erlaubt eine maximal trennende Aufteilung der Fälle in die bekannten Ausprägungen einer Gruppe? Weitere, damit in Zusammenhang stehende Fragen können sein: Auf welche Weise werden die Fälle klassiert, wie genau werden die Fälle klassiert (erkennbar an der Anzahl der Fehlklassifikationen), und wie sind die schlussendlich entstehenden Klassifizierungen zu interpretieren? Es werden u.a. diverse Methoden der Variablenselektion (direkt, schrittweise), sowie auch die Berechnung und Interpretation multipler schrittweiser Diskriminanzanalysen mit mehreren ermittelten Funktionen vorgestellt (einschliesslich Lambda, Box-Test, Kreuzvalidierung (Interpretation von Kovarianz-Matrizen), das Identifizieren von Multikollinearität, sowie Gebietskarten (Territorien). Weitere Kapitel stellen Möglichkeiten des Clusterns und Segmentierens (u.a. mit CLEMENTINE, Entscheidungsbäume und ausgewählte Cluste
Autorenporträt
Dr. Christian FG Schendera ist Wissenschaftlicher Mitarbeiter im Zentrum für Geschichtsdidaktik und Erinnerungskulturen an der PHZ Luzern. Er ist empirischer Sozialwissenschaftler mit Schwerpunkt Wissenskonstruktion, einschließlich Forschungsmethoden und Statistik. Zahlreiche Veröffentlichungen, u.a. "SQL mit SAS" in zwei Bänden (2012, 2011), "Clusteranalyse mit SPSS" (2010), "Regression mit SPSS" (2008), "Datenqualität mit SPSS" (2007), sowie "Datenmanagement und Datenanalyse mit dem SAS System" (2012, 2004). Christian FG Schendera ist u.a. Mitglied in der Deutschen Gesellschaft für Evaluation e.V. und der Schweizerischen Gesellschaft für Gesetzgebung e.V.