42,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
21 °P sammeln
  • Broschiertes Buch

Se em uma análise de regressão múltipla as variáveis independentes, ou explicativas, forem correlacionadas entre si, diz-se que há intercorrelação ou multicolinearidade entre elas. Se a correlação entre as variáveis for perfeita infinitos modelos de regressão podem ser ajustados aos dados, impedindo a interpretação do conjunto de coeficientes de regressão estimados. Neste trabalho os resultados evidenciam a relevância dos problemas advindos da multicolinearidade, e possibilitam concluir que a combinação de alguns métodos de diagnóstico é eficiente para a quantificação da intensidade da associação entre os caracteres e a identificação dos mesmos.…mehr

Produktbeschreibung
Se em uma análise de regressão múltipla as variáveis independentes, ou explicativas, forem correlacionadas entre si, diz-se que há intercorrelação ou multicolinearidade entre elas. Se a correlação entre as variáveis for perfeita infinitos modelos de regressão podem ser ajustados aos dados, impedindo a interpretação do conjunto de coeficientes de regressão estimados. Neste trabalho os resultados evidenciam a relevância dos problemas advindos da multicolinearidade, e possibilitam concluir que a combinação de alguns métodos de diagnóstico é eficiente para a quantificação da intensidade da associação entre os caracteres e a identificação dos mesmos.
Autorenporträt
Nome: Samuel Pereira de CarvalhoFormação Acadêmica: Bacharel em Agronomia, pela Escola Superior de Agricultura de Lavras - ESAL (1972); Mestrado em Genética e Melhoramento de Plantas, pela Escola Superior de Agricultura de Lavras - ESAL (1989); Doutorado em Genética e Melhoramento, pela Universidade Federal de Viçosa - UFV (1995).