Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.
Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Cohomology of arithmetic groups, automorphic forms and L-functions.- Limit multiplicities in L 2(??G).- Generalized modular symbols.- On Yoshida's theta lift.- Some results on the Eisenstein cohomology of arithmetic subgroups of GL n .- Period invariants of Hilbert modular forms, I: Trilinear differential operators and L-functions.- An effective finiteness theorem for ball lattices.- Unitary representations with nonzero multiplicities in L2(??G).- Signature des variétés modulaires de Hilbert et representations diédrales.- The Riemann-Hodge period relation for Hilbert modular forms of weight 2.- Modular symbols and the Steinberg representation.- Lefschetz numbers for arithmetic groups.- Boundary contributions to Lefschetz numbers for arithmetic groups I.- Embedding of Flensted-Jensen modules in L 2(??G) in the noncompact case.
Cohomology of arithmetic groups, automorphic forms and L-functions.- Limit multiplicities in L 2(??G).- Generalized modular symbols.- On Yoshida's theta lift.- Some results on the Eisenstein cohomology of arithmetic subgroups of GL n .- Period invariants of Hilbert modular forms, I: Trilinear differential operators and L-functions.- An effective finiteness theorem for ball lattices.- Unitary representations with nonzero multiplicities in L2(??G).- Signature des variétés modulaires de Hilbert et representations diédrales.- The Riemann-Hodge period relation for Hilbert modular forms of weight 2.- Modular symbols and the Steinberg representation.- Lefschetz numbers for arithmetic groups.- Boundary contributions to Lefschetz numbers for arithmetic groups I.- Embedding of Flensted-Jensen modules in L 2(??G) in the noncompact case.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826