19,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
10 °P sammeln
  • Broschiertes Buch

Collaborative filtering (CF) is the process of filtering for information or patterns using techniques involving collaboration among multiple agents, viewpoints, data sources, etc. Applications of collaborative filtering typically involve very large data sets. Collaborative filtering methods have been applied to many different kinds of data including sensing and monitoring data - such as in mineral exploration, environmental sensing over large areas or multiple sensors; financial data - such as financial service institutions that integrate many financial sources; or in electronic commerce and…mehr

Produktbeschreibung
Collaborative filtering (CF) is the process of filtering for information or patterns using techniques involving collaboration among multiple agents, viewpoints, data sources, etc. Applications of collaborative filtering typically involve very large data sets. Collaborative filtering methods have been applied to many different kinds of data including sensing and monitoring data - such as in mineral exploration, environmental sensing over large areas or multiple sensors; financial data - such as financial service institutions that integrate many financial sources; or in electronic commerce and web 2.0 applications where the focus is on user data, etc. The remainder of this discussion focuses on collaborative filtering for user data, although some of the methods and approaches may apply to the other major applications as well. The method of making automatic predictions (filtering) about the interests of a user by collecting taste information from many users (collaborating). The underlying assumption of CF approach is that those who agreed in the past tend to agree again in the future.