Donald L. Kreher (Michigan Technological University, Houghton, USA), Douglas R. Stinson (University of Waterloo, Ontario, Canada)
Combinatorial Algorithms
Generation, Enumeration, and Search
Donald L. Kreher (Michigan Technological University, Houghton, USA), Douglas R. Stinson (University of Waterloo, Ontario, Canada)
Combinatorial Algorithms
Generation, Enumeration, and Search
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Combinatorial Algorithms: Generation, Enumeration, and Search thoroughly outlines and analyzes combinatorial algorithms for generation, enumeration, and search applications.
Andere Kunden interessierten sich auch für
- Donald L. KreherCombinatorial Algorithms187,99 €
- Ian StewartAlgebraic Number Theory and Fermat's Last Theorem71,99 €
- Ian Stewart (UK University of Warwick)Algebraic Number Theory and Fermat's Last Theorem117,99 €
- Douglas Robert StinsonCryptography93,99 €
- Alexander KharazishviliIntroduction to Combinatorial Methods in Geometry126,99 €
- Douglas Robert StinsonCryptography48,99 €
- Xuding ZhuCombinatorial Nullstellensatz80,99 €
-
-
-
Combinatorial Algorithms: Generation, Enumeration, and Search thoroughly outlines and analyzes combinatorial algorithms for generation, enumeration, and search applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Discrete Mathematics and Its Applications
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 344
- Erscheinungstermin: 1. November 2019
- Englisch
- Abmessung: 233mm x 154mm x 22mm
- Gewicht: 544g
- ISBN-13: 9780367400156
- ISBN-10: 0367400154
- Artikelnr.: 58313820
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Discrete Mathematics and Its Applications
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 344
- Erscheinungstermin: 1. November 2019
- Englisch
- Abmessung: 233mm x 154mm x 22mm
- Gewicht: 544g
- ISBN-13: 9780367400156
- ISBN-10: 0367400154
- Artikelnr.: 58313820
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Kreher, Donald L.; Stinson, Douglas R.
Structures and Algorithms What are Combinatorial Algorithms? What are
Combinatorial Structures? What are Combinatorial Problems? O-Notation
Analysis of Algorithms Complexity Classes Data Structures Algorithm Design
Techniques Generating Elementary Combinatorial Objects Combinatorial
Generation Subsets k-Element Subsets Permutations More Topics in
Combinatorial Generation Integer Partitions Set Partitions, Bell and
Stirling Numbers Labeled Trees Catalan Families Backtracking Algorithms
Introduction A General Backtrack Algorithm Generating All Cliques
Estimating the Size of a Backtrack Tree Exact Cover Bounding Functions
Branch-and-Bound Heuristic Search Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms A Steepest-Ascent Algorithm for
Uniform Graph Partition A Hill-Climbing Algorithm for Steiner Triple
Systems Two Heuristic Algorithms for the Knapsack Problem A Genetic
Algorithm for the Traveling Salesman Problem Groups and Symmetry Groups
Permutation Groups Orbits of Subsets Coset Representatives Orbits of
k-tuples Generating Objects Having Automorphisms Computing Isomorphism
Introduction Invariants Computing Certificates Isomorphism of Other
Structures Basis Reduction Introduction Theoretical Development A Reduced
Basis Algorithm Solving Systems of Integer Equations The Merkle-Hellman
Knapsack System Bibliography Algorithm Index Problem Index Index
Combinatorial Structures? What are Combinatorial Problems? O-Notation
Analysis of Algorithms Complexity Classes Data Structures Algorithm Design
Techniques Generating Elementary Combinatorial Objects Combinatorial
Generation Subsets k-Element Subsets Permutations More Topics in
Combinatorial Generation Integer Partitions Set Partitions, Bell and
Stirling Numbers Labeled Trees Catalan Families Backtracking Algorithms
Introduction A General Backtrack Algorithm Generating All Cliques
Estimating the Size of a Backtrack Tree Exact Cover Bounding Functions
Branch-and-Bound Heuristic Search Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms A Steepest-Ascent Algorithm for
Uniform Graph Partition A Hill-Climbing Algorithm for Steiner Triple
Systems Two Heuristic Algorithms for the Knapsack Problem A Genetic
Algorithm for the Traveling Salesman Problem Groups and Symmetry Groups
Permutation Groups Orbits of Subsets Coset Representatives Orbits of
k-tuples Generating Objects Having Automorphisms Computing Isomorphism
Introduction Invariants Computing Certificates Isomorphism of Other
Structures Basis Reduction Introduction Theoretical Development A Reduced
Basis Algorithm Solving Systems of Integer Equations The Merkle-Hellman
Knapsack System Bibliography Algorithm Index Problem Index Index
Structures and Algorithms What are Combinatorial Algorithms? What are
Combinatorial Structures? What are Combinatorial Problems? O-Notation
Analysis of Algorithms Complexity Classes Data Structures Algorithm Design
Techniques Generating Elementary Combinatorial Objects Combinatorial
Generation Subsets k-Element Subsets Permutations More Topics in
Combinatorial Generation Integer Partitions Set Partitions, Bell and
Stirling Numbers Labeled Trees Catalan Families Backtracking Algorithms
Introduction A General Backtrack Algorithm Generating All Cliques
Estimating the Size of a Backtrack Tree Exact Cover Bounding Functions
Branch-and-Bound Heuristic Search Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms A Steepest-Ascent Algorithm for
Uniform Graph Partition A Hill-Climbing Algorithm for Steiner Triple
Systems Two Heuristic Algorithms for the Knapsack Problem A Genetic
Algorithm for the Traveling Salesman Problem Groups and Symmetry Groups
Permutation Groups Orbits of Subsets Coset Representatives Orbits of
k-tuples Generating Objects Having Automorphisms Computing Isomorphism
Introduction Invariants Computing Certificates Isomorphism of Other
Structures Basis Reduction Introduction Theoretical Development A Reduced
Basis Algorithm Solving Systems of Integer Equations The Merkle-Hellman
Knapsack System Bibliography Algorithm Index Problem Index Index
Combinatorial Structures? What are Combinatorial Problems? O-Notation
Analysis of Algorithms Complexity Classes Data Structures Algorithm Design
Techniques Generating Elementary Combinatorial Objects Combinatorial
Generation Subsets k-Element Subsets Permutations More Topics in
Combinatorial Generation Integer Partitions Set Partitions, Bell and
Stirling Numbers Labeled Trees Catalan Families Backtracking Algorithms
Introduction A General Backtrack Algorithm Generating All Cliques
Estimating the Size of a Backtrack Tree Exact Cover Bounding Functions
Branch-and-Bound Heuristic Search Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms A Steepest-Ascent Algorithm for
Uniform Graph Partition A Hill-Climbing Algorithm for Steiner Triple
Systems Two Heuristic Algorithms for the Knapsack Problem A Genetic
Algorithm for the Traveling Salesman Problem Groups and Symmetry Groups
Permutation Groups Orbits of Subsets Coset Representatives Orbits of
k-tuples Generating Objects Having Automorphisms Computing Isomorphism
Introduction Invariants Computing Certificates Isomorphism of Other
Structures Basis Reduction Introduction Theoretical Development A Reduced
Basis Algorithm Solving Systems of Integer Equations The Merkle-Hellman
Knapsack System Bibliography Algorithm Index Problem Index Index