Donald L. Kreher (Michigan Technological University, Houghton, USA), Douglas R. Stinson (University of Waterloo, Ontario, Canada)
Combinatorial Algorithms
Generation, Enumeration, and Search
Donald L. Kreher (Michigan Technological University, Houghton, USA), Douglas R. Stinson (University of Waterloo, Ontario, Canada)
Combinatorial Algorithms
Generation, Enumeration, and Search
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Combinatorial Algorithms: Generation, Enumeration, and Search thoroughly outlines and analyzes combinatorial algorithms for generation, enumeration, and search applications.
Andere Kunden interessierten sich auch für
- Donald L. KreherCombinatorial Algorithms186,99 €
- Ian StewartAlgebraic Number Theory and Fermat's Last Theorem71,99 €
- Ian Stewart (UK University of Warwick)Algebraic Number Theory and Fermat's Last Theorem117,99 €
- Douglas Robert StinsonCryptography97,99 €
- Alexander KharazishviliIntroduction to Combinatorial Methods in Geometry132,99 €
- Douglas Robert StinsonCryptography50,99 €
- Xuding ZhuCombinatorial Nullstellensatz82,99 €
-
-
-
Combinatorial Algorithms: Generation, Enumeration, and Search thoroughly outlines and analyzes combinatorial algorithms for generation, enumeration, and search applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Discrete Mathematics and Its Applications
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 344
- Erscheinungstermin: 1. November 2019
- Englisch
- Abmessung: 233mm x 154mm x 22mm
- Gewicht: 544g
- ISBN-13: 9780367400156
- ISBN-10: 0367400154
- Artikelnr.: 58313820
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Discrete Mathematics and Its Applications
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 344
- Erscheinungstermin: 1. November 2019
- Englisch
- Abmessung: 233mm x 154mm x 22mm
- Gewicht: 544g
- ISBN-13: 9780367400156
- ISBN-10: 0367400154
- Artikelnr.: 58313820
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Kreher, Donald L.; Stinson, Douglas R.
Structures and Algorithms
What are Combinatorial Algorithms?
What are Combinatorial Structures?
What are Combinatorial Problems?
O-Notation
Analysis of Algorithms
Complexity Classes
Data Structures
Algorithm Design Techniques
Generating Elementary Combinatorial Objects
Combinatorial Generation
Subsets
k-Element Subsets
Permutations
More Topics in Combinatorial Generation
Integer Partitions
Set Partitions, Bell and Stirling Numbers
Labeled Trees
Catalan Families
Backtracking Algorithms
Introduction
A General Backtrack Algorithm
Generating All Cliques
Estimating the Size of a Backtrack Tree
Exact Cover
Bounding Functions
Branch-and-Bound
Heuristic Search
Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms
A Steepest-Ascent Algorithm for Uniform Graph Partition
A Hill-Climbing Algorithm for Steiner Triple Systems
Two Heuristic Algorithms for the Knapsack Problem
A Genetic Algorithm for the Traveling Salesman Problem
Groups and Symmetry
Groups
Permutation Groups
Orbits of Subsets
Coset Representatives
Orbits of k-tuples
Generating Objects Having Automorphisms
Computing Isomorphism
Introduction
Invariants
Computing Certificates
Isomorphism of Other Structures
Basis Reduction
Introduction
Theoretical Development
A Reduced Basis Algorithm
Solving Systems of Integer Equations
The Merkle-Hellman Knapsack System
Bibliography
Algorithm Index
Problem Index
Index
What are Combinatorial Algorithms?
What are Combinatorial Structures?
What are Combinatorial Problems?
O-Notation
Analysis of Algorithms
Complexity Classes
Data Structures
Algorithm Design Techniques
Generating Elementary Combinatorial Objects
Combinatorial Generation
Subsets
k-Element Subsets
Permutations
More Topics in Combinatorial Generation
Integer Partitions
Set Partitions, Bell and Stirling Numbers
Labeled Trees
Catalan Families
Backtracking Algorithms
Introduction
A General Backtrack Algorithm
Generating All Cliques
Estimating the Size of a Backtrack Tree
Exact Cover
Bounding Functions
Branch-and-Bound
Heuristic Search
Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms
A Steepest-Ascent Algorithm for Uniform Graph Partition
A Hill-Climbing Algorithm for Steiner Triple Systems
Two Heuristic Algorithms for the Knapsack Problem
A Genetic Algorithm for the Traveling Salesman Problem
Groups and Symmetry
Groups
Permutation Groups
Orbits of Subsets
Coset Representatives
Orbits of k-tuples
Generating Objects Having Automorphisms
Computing Isomorphism
Introduction
Invariants
Computing Certificates
Isomorphism of Other Structures
Basis Reduction
Introduction
Theoretical Development
A Reduced Basis Algorithm
Solving Systems of Integer Equations
The Merkle-Hellman Knapsack System
Bibliography
Algorithm Index
Problem Index
Index
Structures and Algorithms
What are Combinatorial Algorithms?
What are Combinatorial Structures?
What are Combinatorial Problems?
O-Notation
Analysis of Algorithms
Complexity Classes
Data Structures
Algorithm Design Techniques
Generating Elementary Combinatorial Objects
Combinatorial Generation
Subsets
k-Element Subsets
Permutations
More Topics in Combinatorial Generation
Integer Partitions
Set Partitions, Bell and Stirling Numbers
Labeled Trees
Catalan Families
Backtracking Algorithms
Introduction
A General Backtrack Algorithm
Generating All Cliques
Estimating the Size of a Backtrack Tree
Exact Cover
Bounding Functions
Branch-and-Bound
Heuristic Search
Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms
A Steepest-Ascent Algorithm for Uniform Graph Partition
A Hill-Climbing Algorithm for Steiner Triple Systems
Two Heuristic Algorithms for the Knapsack Problem
A Genetic Algorithm for the Traveling Salesman Problem
Groups and Symmetry
Groups
Permutation Groups
Orbits of Subsets
Coset Representatives
Orbits of k-tuples
Generating Objects Having Automorphisms
Computing Isomorphism
Introduction
Invariants
Computing Certificates
Isomorphism of Other Structures
Basis Reduction
Introduction
Theoretical Development
A Reduced Basis Algorithm
Solving Systems of Integer Equations
The Merkle-Hellman Knapsack System
Bibliography
Algorithm Index
Problem Index
Index
What are Combinatorial Algorithms?
What are Combinatorial Structures?
What are Combinatorial Problems?
O-Notation
Analysis of Algorithms
Complexity Classes
Data Structures
Algorithm Design Techniques
Generating Elementary Combinatorial Objects
Combinatorial Generation
Subsets
k-Element Subsets
Permutations
More Topics in Combinatorial Generation
Integer Partitions
Set Partitions, Bell and Stirling Numbers
Labeled Trees
Catalan Families
Backtracking Algorithms
Introduction
A General Backtrack Algorithm
Generating All Cliques
Estimating the Size of a Backtrack Tree
Exact Cover
Bounding Functions
Branch-and-Bound
Heuristic Search
Introduction to Heuristic Algorithms
Design Strategies for Heuristic Algorithms
A Steepest-Ascent Algorithm for Uniform Graph Partition
A Hill-Climbing Algorithm for Steiner Triple Systems
Two Heuristic Algorithms for the Knapsack Problem
A Genetic Algorithm for the Traveling Salesman Problem
Groups and Symmetry
Groups
Permutation Groups
Orbits of Subsets
Coset Representatives
Orbits of k-tuples
Generating Objects Having Automorphisms
Computing Isomorphism
Introduction
Invariants
Computing Certificates
Isomorphism of Other Structures
Basis Reduction
Introduction
Theoretical Development
A Reduced Basis Algorithm
Solving Systems of Integer Equations
The Merkle-Hellman Knapsack System
Bibliography
Algorithm Index
Problem Index
Index