348,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
174 °P sammeln
  • Gebundenes Buch

Compact Heat Exchangers for Energy Transfer Intensification: Low-Grade Heat and Fouling Mitigation provides theoretical and experimental background on heat transfer intensification in modern heat exchangers. Emphasizing applications in complex heat recovery systems for the process industries, this book: Covers various issues related to low-grade heat, including waste heat from industry and buildings, storage and transport of thermal energy, and heat transfer equipment requirements Explains the basic principles, terminology, and heat transfer aspects of compactness, as well as the concept of…mehr

Produktbeschreibung
Compact Heat Exchangers for Energy Transfer Intensification: Low-Grade Heat and Fouling Mitigation provides theoretical and experimental background on heat transfer intensification in modern heat exchangers. Emphasizing applications in complex heat recovery systems for the process industries, this book: Covers various issues related to low-grade heat, including waste heat from industry and buildings, storage and transport of thermal energy, and heat transfer equipment requirements Explains the basic principles, terminology, and heat transfer aspects of compactness, as well as the concept of intensified heat area targets at process integration Pays special attention to the mitigation of fouling in heat exchangers and their systems, describing fouling deposition and threshold fouling mechanisms Delivers a thoughtful analysis of the economics of implementation, considering energy-capital trade-off, capital cost estimation, and energy prices Presents illustrative case studies of specific applications in food and chemical production plants Compact Heat Exchangers for Energy Transfer Intensification: Low-Grade Heat and Fouling Mitigation not only highlights key developments in compact heat exchangers, but also instills a practical knowledge of the latest process integration and heat transfer enhancement methodologies.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Jiri Jaromir Klemes holds a D.Sc from the Hungarian Academy of Sciences, and Doctor Honoris Causa degrees from the Kharkiv State Polytechnic University, Ukraine; the University of Maribor, Slovenia; and the Politehnica University of Bucharest, Romania. Dr Klemes is a Polya professor and the Head of the Centre for Process Integration and Intensification-CPI2 at the University of Pannonia, Veszprem in Hungary. He worked previously for 20 years in the Department of Process Integration at the University of Manchester Institute of Science and Technology, UK, and after the merge with The University of Manchester, UK, as Senior Project Officer and Honorary Reader. He also ran research in mathematical modelling and neural network applications at the Chemical Engineering Department, University of Edinburgh, Scotland, and has been a Distinguished Visiting Professor at the Universiti Technologi Malaysia and Universiti Technologi Petronas in Malaysia, South China University of Technology, Guangzhou, Tianjin University, Jiaotong Xi'an University and Guangdong University of Petrochemical Technology, Maoming in China, University of Maribor in Slovenia, and Brno University of Technology in the Czech Republic. He has unique success record in managing and coordinating research projects funded by the European Community FP2 to 7, UK Know How Fund, NATO High Technology, European Training Foundation, and others. He is an editor of several scientific journals, and has authored and edited numerous books. He founded and has been since the president of the International Conference Process Integration, Mathematical Modelling and Optimisation for Energy Saving and Pollution reduction- PRES (www.conferencepres.com), and is Chair of the CAPE Working Party of the European Federation of Chemical Engineering.Olga P. Arsenyeva is an Associate Professor in the Department of Integrated Technolo