Composites for Environmental Engineering
Herausgeber: Ahmed, Shakeel; Chaudhry, Saif Ali
Composites for Environmental Engineering
Herausgeber: Ahmed, Shakeel; Chaudhry, Saif Ali
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Provides in-depth coverage of composites with a primary emphasis on their properties, processing, and their growing applications in environmental engineering Composites are materials made from two or more constituent materials with significantly different physical or chemical properties. The two materials combine to give a new material with higher strength, toughness, stiffness, as well as a higher resistance to creep, corrosion, wear or fatigue, compared to conventional materials. These composite materials are used in a variety of products such as spacecraft, sporting goods, sensors,…mehr
Andere Kunden interessierten sich auch für
- Health and Environmental Safety of Nanomaterials251,99 €
- Materials Technology for the Energy and Environmental Nexus, Volume 1217,99 €
- Handbook of Environmental Fluid Dynamics, Volume One275,99 €
- Valter CarvelliFatigue of Textile and Short Fiber Reinforced Composites194,99 €
- Nanomaterials and Surface Engineering202,99 €
- Zhenhai XiaBiomimetic Principles and Design of Advanced Engineering Materials115,99 €
- William F RileyEngineering Mechanics343,99 €
-
-
-
Provides in-depth coverage of composites with a primary emphasis on their properties, processing, and their growing applications in environmental engineering Composites are materials made from two or more constituent materials with significantly different physical or chemical properties. The two materials combine to give a new material with higher strength, toughness, stiffness, as well as a higher resistance to creep, corrosion, wear or fatigue, compared to conventional materials. These composite materials are used in a variety of products such as spacecraft, sporting goods, sensors, actuators, biomedical materials, batteries, cars, furniture, aircraft components. This book focuses on the characterization, processing and properties of various types of composite materials, as well as their environmental engineering applications. The chapters cover nearly every topic related to composites in environmental engineering in four broad perspectives: (1) classification of composites (2) green/hybrid synthesis and characterization of nano and biocomposites (3) processing of composite materials (4) state-of-the-art in fabricating nano and biocomposites for environmental applications. Specifically, subjects include * Utilization of fiber reinforced polymer composite materials and their sustainable and green advantages * Comprehensive review of the advances made in the mechanochemical process of composite preparation * Food packaging applications of biodegradable polymer nanocomposites * Constructive techniques in the application of nanocomposites for treatment of pollutants, impurities sensing, and detection * Zinc oxide nanocomposites and their application in water remediation * Types of metal nanocomposites and their applications in degradation of organic dyes in pollution control * Polymer and magnetic polymer nanocomposites, fabrication methods, and applications like catalytic degradation, adsorption of pollutants, elimination of heavy metals, toxic dyes, effluents and removal of oil from water in environmental engineering * Strategies to develop bio-composites from food wastes Audience Researchers and industry scientists/engineers working in the fields of polymer science, chemistry, environmental engineering, and materials science.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 450
- Erscheinungstermin: 19. November 2019
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 800g
- ISBN-13: 9781119555292
- ISBN-10: 1119555299
- Artikelnr.: 56262079
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- Seitenzahl: 450
- Erscheinungstermin: 19. November 2019
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 800g
- ISBN-13: 9781119555292
- ISBN-10: 1119555299
- Artikelnr.: 56262079
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Shakeel Ahmed is working as an Assistant Professor in Chemistry at the Higher Education Department, Government of Jammu and Kashmir, India. He obtained his PhD in the area of biopolymers and bionanocomposites from Jamia Millia Islamia in the year 2016 and has published several research publications in the area of green nanomaterials and biopolymers for various applications including biomedical, packaging, sensors, and water treatment. He has 15 books to his credit by international publishers. His work has been cited more than 2000 times and with h-index of 16. Saif Ali Chaudhry is an inorganic chemist at the Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, India, where he also obtained his PhD in Environmental (Water) Chemistry.
Preface xvii
1 Composites: Types, Method of Preparation and Application as An Emerging
Tool for Environmental Remediation 1
Bushra Fatima, Geetanjali Rathi, Rabia Ahmad and Saif Ali Chaudhry
1.1 Introduction 2
1.2 Classification Based on Matrix 4
1.2.1 Metal Matrix Composites (MMC) 5
1.2.2 Methods for Synthesizing Metal-Matrix Composites 5
1.2.3 Bonding in Metal Matrix Composites 9
1.2.4 Applications of Metal Matrix Composites 10
1.3 Polymer Matrix Composites 10
1.3.1 Classification of Polymer Matrix Composites 12
1.3.2 Methods for Synthesizing of Polymer Composites 13
1.3.3 Bonding in Polymer Matrix Composites 15
1.3.4 Applications of Polymer Matrix Composites 16
1.4 Ceramic Matrix Composites 16
1.4.1 Methods for Synthesizing Ceramic Matrix Composites 17
1.4.2 Advantage of Ceramic Matrix Composites 18
1.4.3 Disadvantages of Ceramic Matrix Composites 18
1.4.4 Applications of Ceramic Matrix Composites 18
1.5 Classification Based on Reinforcement 19
1.5.1 Fiber-Reinforced Composites 19
1.5.2 Particle Reinforced Composites 20
1.5.3 Structural Reinforced Composites 20
1.6 Recent Advancement in Composites 21
1.6.1 Methods for Synthesizing Green Composites 22
1.6.2 Advantages and Disadvantages of Green Composites over Traditional
Composites 22
1.6.3 Applications of Green Composites 22
1.7 Advantages of Composites 23
1.8 Disadvantages of Composites 23
1.9 Conclusion 24
1.10 Future Prospects 24
1.11 Acknowledgement 25
References 25
2 Applications of Composites Materials for Environmental Aspects 33
Pintu Pandit, Kunal Singha, Akshay Jadhav, T.N. Gayatri and Utpal Dhara
2.1 Introduction 34
2.2 History of Composites for Eco-Friendly Engineering 35
2.3 Composites for Greenhouses 36
2.4 Polymers have been Reinforced by Fiber (FRP) for Greenhouse 36
2.4.1 Composites Employed in Controlling Humidity in the Home which is
Green 36
2.4.2 Composite Films for Optical Transmission of Greenhouse 37
2.5 Composites Employed in Acoustic Applications 37
2.6 Natural Fiber Composites 40
2.6.1 Pretreatment of Natural Fiber 40
2.6.2 Factors Impacting on Bodily Functioning of Natural Fiber Composites
41
2.6.2.1 Fiber Selection 41
2.6.2.2 Matrix Selection 42
2.6.2.3 Interface Strength 42
2.6.2.4 Fiber Orientation 42
2.6.3 Jute-Coir Composites for Constructions 43
2.6.4 Bamboo Composites for Construction 43
2.7 Effective Factors for Low Frequency Acoustic Absorption 44
2.7.1 Fiber Size 44
2.7.2 Feed Size 45
2.7.3 Majority Density 45
2.7.4 Sample Layer Thickness 46
2.8 Composites Employed in Wind Energy 46
2.9 Composites Used in Wind Turbines 47
2.9.1 Impact of Wind Hit on the Composite Material 47
2.10 Composite Materials for the Marine Environment 48
2.11 Composite Materials for Aerospace Engineering 49
2.12 Composites Materials for Civil Engineering 50
2.13 Composite Materials Employed in Solar Energy Panels 50
2.14 Conclusions 51
References 52
3 The Application of Mechano-Chemistry in Composite Preparation 57
S. C. Onwubu, P. S. Mdluli, S. Singh, and M. U. Makgobole
3.1 Introduction 57
3.2 The Science of Mechanochemistry 58
3.3 Brief History of Mechanochemistry Application 59
3.4 Mechanochemical Tools 60
3.5 Applications of Mechanochemistry in the Milling of Eggshell Powder 63
3.6 Conclusions 65
References 66
4 Fiber-Reinforced Composites for Environmental Engineering 69
Gayatri T. Nadathur, Pintu Pandit and Kunal Singha
4.1 Introduction 69
4.2 Strength of FRC Materials 72
4.3 Composite Manufacturing 74
4.4 Environmental Sustainability of Composites 77
4.5 Green Composites 80
4.6 Composite Filtration Membranes/Media 85
4.7 Liquid (Water or Oil) Filtration Media 86
4.8 Air Filtration Media 88
4.9 Filtration/Separation of Oil-Water Liquid Mixtures 88
4.10 FRCs for Noise Reduction 91
4.11 Fire Resistant FRCs 92
4.12 Conclusions 94
References 94
5 Polymer Nanocomposites: Alternative to Reduce Environmental Impact of
Non-Biodegradable Food Packaging Materials 99
Shiji Mathew and Radhakrishnan EK
5.1 Introduction 99
5.2 Role of Food Packaging Materials 101
5.3 Environmental Impact of Food Packaging 102
5.4 Polymer Nanocomposites 103
5.5 Biopolymers as Packaging Materials 104
5.6 Advantages of Biopolymers 105
5.7 Reinforcements used in Bionanocomposites 106
5.7.1 Nanoclays-Layered Clays/Silicates 106
5.7.2 Metal and Metal Oxide Nanoparticles 107
5.8 Bionanocomposites 108
5.9 Polysaccharide-Based Bionanocomposites 108
5.9.1 Starch-Based Packaging Material 108
5.10 Protein-Based Bionanocomposites 109
5.10.1 Gelatin Bionanocomposites 110
5.11 Biodegradable Synthetic Polymers 111
5.11.1 Polylactic Acid-Based Packaging Materials 111
5.11.2 Poly (Vinyl) Alcohol-Based Packaging Materials 112
5.12 Properties of Bionanocomposites 113
5.12.1 Mechanical Properties 115
5.12.2 Barrier Properties 115
5.12.3 Thermal Properties 117
5.12.4 Biodegradability 117
5.13 Changes Occurring during Biodegradation Process 119
5.14 Methods of Preparation of Bionanocomposites 120
5.14.1 In Situ Polymerization 120
5.14.2 Melt Intercalation Technique 120
5.14.3 Solvent Casting 121
5.15 Bionanocomposite Characterization 121
5.16 Conclusions 123
References 124
6 Environmental Science and Engineering Applications of Polymer and
Nanocellulose-Based Nanocomposites 135
Niranjan Thondavada, Rajasekhar Chokkareddy, Nuthalapati Venkatasubba Naidu
and G. G. Redhi
6.1 Introduction 136
6.2 Preparation of Polymer Nanocomposites 137
6.2.1 Direct Compounding 137
6.2.2 In-Situ Synthesis 138
6.3 Environmental Applications of PNCs 141
6.3.1 Catalytic and Redox Degradation of Pollutants 141
6.4 Biocatalytic Nanocomposites 142
6.4.1 Adsorption of Pollutants 151
6.5 Preparation of Nanocellulose 155
6.5.1 Nanocellulose-Based Nanocomposites 158
6.5.2 Antimicrobial Filters 162
6.5.3 Catalysis 162
6.5.4 Energy Applications 164
6.6 Conclusion 166
References 166
7 Nanocomposites of ZnO for Water Remediation 179
Parita Basnet and Somenath Chatterjee
7.1 Introduction 180
7.2 Aqueous Pollutants 182
7.3 Types of ZnO NCs 184
7.3.1 M-ZnO NCs as Photocatalyst 185
7.3.1.1 Metal Doped/Incorporated-ZnO NCs as Photocatalyst 185
7.3.1.2 Metal Deposited-ZnO NCs as Photocatalyst 188
7.3.2 Semiconductor-ZnO (S-ZnO) NCs as Photocatalyst 191
7.3.3 Polymer-ZnO (P-ZnO) NCs as Photocatalyst 193
7.3.4 Mixed Metal, Semiconductor and/or Polymer-ZnO NCs as Photocatalyst
197
7.3.4.1 Bimetallic-ZnO NCs as Photocatalyst 197
7.3.4.2 Metal-Semiconductor-ZnO (M-S-ZnO) NCs as Photocatalyst 199
7.4 Other Applications Related to the Photocatalytic Activities of ZnO NCs
201
7.5 Conclusion 206
7.6 Acknowledgement 222
References 222
8 Degradation of Organic Compounds by the Applications of Metal
Nanocomposites 235
Iffat Zareen Ahmad and Mohammed Kuddus
8.1 Introduction 237
8.2 Metal Oxides Used in Photocatalytic Degradation of Organic Pollutants
in Wastewater 244
8.2.1 Titanium Dioxide 244
8.2.2 Graphene Oxide 248
8.2.3 Zinc Oxide 249
8.2.4 Cesium Oxide 250
8.2.5 Silver Salts 250
8.2.6 Bismuth Compounds 251
8.2.7 Copper Compounds 252
8.2.8 Gold Compounds 254
8.3 Conclusion 255
References 256
9 Nanocomposites in Environmental Engineering 263
Mohammad Nadeem Lone and Irshad A. Wani
9.1 Introduction 264
9.2 Polymeric Nanocomposites 265
9.2.1 PNC's as Catalysts and Redox Active Media 265
9.2.2 PNC's for Adsorption and Degradation of Pollutants 285
9.3 Magnetic Polymer Based Nanocomposites 287
9.3.1 Types of Magnetic Nanocomposites 287
9.3.1.1 Type I: Inorganic Core Shell Nanocomposites 287
9.3.1.2 Type II: Self Assembled Colloidal Nanocomposites 288
9.3.1.3 Type III: Organic-Inorganic Nanocomposites 288
9.3.2 Synthesis of Magnetic Nanocomposites (MNC's) 289
9.3.2.1 Ex-Situ Synthesis 289
9.3.2.2 In-Situ Synthesis 290
9.3.3 Environmental Applications 294
9.3.3.1 Elimination of Heavy Metals 294
9.3.3.2 Elimination of Toxic Dyes and Effluents 297
9.3.3.3 Removal of Oil from Water 298
9.4 Future Perspectives and Conclusion 299
References 300
10 Bio-Composites from Food Wastes 319
Pintu Choudhary, Priyanga Suriyamoorthy, J. A. Moses and C.
Anandharamakrishnan
10.1 Introduction 319
10.2 Vegetables Waste 326
10.3 Fruit Waste 329
10.4 Coffee and Tea Waste 332
10.5 Animal-Based Food Waste 333
10.6 Food Grain Waste 337
References 339
11 Properties of Food Packaging Biocomposites and Its Impact on Environment
347
K.S. Yoha, M. Maria Leena, J.A. Moses and C. Anandharamakrishnan
11.1 Introduction 348
11.2 Importance of Food Packaging 350
11.3 Packaging Materials Impact on Environment 351
11.4 Risks of Elemental Migration from Packaging Material 352
11.4.1 Contact Migration 354
11.4.2 Non-Contact Migration 355
11.5 Selection of Food Packaging Material 355
11.6 Biodegradable Polymers 356
11.6.1 Polysaccharides 358
11.6.1.1 Sugar-Based Biopolymers 358
11.6.1.2 Starch-Based Biopolymers 358
11.6.1.3 Cellulose-Based Biopolymers 359
11.6.1.4 Pectin 359
11.6.2 Proteins 360
11.6.2.1 Collagen 360
11.6.2.2 Casein 361
11.6.2.3 Zein 361
11.6.2.4 Gluten 362
11.6.3 Seaweed Polymers 362
11.6.4 Plants Seed Mucilage 366
11.6.5 Micro-Organisms Synthesized Biopolymers 367
11.6.5.1 Polyhydroxyalkanoates (PHA) 367
11.6.5.2 Polyhydroxybutyrate (PHB) 367
11.6.5.3 Polyhydroxybutyrate-Co-Hydroxyvalerate (PHBV) 368
11.6.6 Bio-Derived Synthetic Polymers 368
11.6.6.1 Poly-Lactic Acid (PLA) 368
11.6.6.2 Poly Glycolic Acid (PGA) 369
11.6.6.3 Poly-Lactic-Co-Glycolic Acid (PLGA) 370
11.7 Bio-Based Polymeric Composite Materials 370
11.7.1 Starch-Based Composites 370
11.7.2 Poly(Hydroxyalkanoate)-Based Composites 371
11.8 Thermal and Mechanical Properties of Composites 371
11.9 Surface Modifications of Biocomposites 372
11.10 Conclusion 373
References 374
12 Environmentally Benign Protocols for the Synthesis of Transition Metal
Oxide: A Brief Outlook 383
Neha D. Desai, Kishorkumar V. Khot, Tukaram D. Dongale, Atul Khot and
Popatrao N. Bhosale
12.1 Introduction 384
12.2 Titanium Dioxide (TiO2) 385
12.2.1 Introduction 385
12.2.2 Method of Synthesis 387
12.2.3 Experimental of TiO2 Thin Film 389
12.2.4 Results and Discussions 389
12.3 Molybdenum Trioxide (MoO3) 392
12.3.1 Introduction 392
12.3.2 Experimental 394
12.3.3 Growth Mechanism 395
12.3.4 Structural Analysis 396
12.4 Zinc Oxide (ZnO) 398
12.4.1 Introduction 398
12.4.2 Experimental 400
12.4.3 TiO2 Memristor Devices 404
12.4.4 ZnO Memristor Devices 406
References 409
Index 421
1 Composites: Types, Method of Preparation and Application as An Emerging
Tool for Environmental Remediation 1
Bushra Fatima, Geetanjali Rathi, Rabia Ahmad and Saif Ali Chaudhry
1.1 Introduction 2
1.2 Classification Based on Matrix 4
1.2.1 Metal Matrix Composites (MMC) 5
1.2.2 Methods for Synthesizing Metal-Matrix Composites 5
1.2.3 Bonding in Metal Matrix Composites 9
1.2.4 Applications of Metal Matrix Composites 10
1.3 Polymer Matrix Composites 10
1.3.1 Classification of Polymer Matrix Composites 12
1.3.2 Methods for Synthesizing of Polymer Composites 13
1.3.3 Bonding in Polymer Matrix Composites 15
1.3.4 Applications of Polymer Matrix Composites 16
1.4 Ceramic Matrix Composites 16
1.4.1 Methods for Synthesizing Ceramic Matrix Composites 17
1.4.2 Advantage of Ceramic Matrix Composites 18
1.4.3 Disadvantages of Ceramic Matrix Composites 18
1.4.4 Applications of Ceramic Matrix Composites 18
1.5 Classification Based on Reinforcement 19
1.5.1 Fiber-Reinforced Composites 19
1.5.2 Particle Reinforced Composites 20
1.5.3 Structural Reinforced Composites 20
1.6 Recent Advancement in Composites 21
1.6.1 Methods for Synthesizing Green Composites 22
1.6.2 Advantages and Disadvantages of Green Composites over Traditional
Composites 22
1.6.3 Applications of Green Composites 22
1.7 Advantages of Composites 23
1.8 Disadvantages of Composites 23
1.9 Conclusion 24
1.10 Future Prospects 24
1.11 Acknowledgement 25
References 25
2 Applications of Composites Materials for Environmental Aspects 33
Pintu Pandit, Kunal Singha, Akshay Jadhav, T.N. Gayatri and Utpal Dhara
2.1 Introduction 34
2.2 History of Composites for Eco-Friendly Engineering 35
2.3 Composites for Greenhouses 36
2.4 Polymers have been Reinforced by Fiber (FRP) for Greenhouse 36
2.4.1 Composites Employed in Controlling Humidity in the Home which is
Green 36
2.4.2 Composite Films for Optical Transmission of Greenhouse 37
2.5 Composites Employed in Acoustic Applications 37
2.6 Natural Fiber Composites 40
2.6.1 Pretreatment of Natural Fiber 40
2.6.2 Factors Impacting on Bodily Functioning of Natural Fiber Composites
41
2.6.2.1 Fiber Selection 41
2.6.2.2 Matrix Selection 42
2.6.2.3 Interface Strength 42
2.6.2.4 Fiber Orientation 42
2.6.3 Jute-Coir Composites for Constructions 43
2.6.4 Bamboo Composites for Construction 43
2.7 Effective Factors for Low Frequency Acoustic Absorption 44
2.7.1 Fiber Size 44
2.7.2 Feed Size 45
2.7.3 Majority Density 45
2.7.4 Sample Layer Thickness 46
2.8 Composites Employed in Wind Energy 46
2.9 Composites Used in Wind Turbines 47
2.9.1 Impact of Wind Hit on the Composite Material 47
2.10 Composite Materials for the Marine Environment 48
2.11 Composite Materials for Aerospace Engineering 49
2.12 Composites Materials for Civil Engineering 50
2.13 Composite Materials Employed in Solar Energy Panels 50
2.14 Conclusions 51
References 52
3 The Application of Mechano-Chemistry in Composite Preparation 57
S. C. Onwubu, P. S. Mdluli, S. Singh, and M. U. Makgobole
3.1 Introduction 57
3.2 The Science of Mechanochemistry 58
3.3 Brief History of Mechanochemistry Application 59
3.4 Mechanochemical Tools 60
3.5 Applications of Mechanochemistry in the Milling of Eggshell Powder 63
3.6 Conclusions 65
References 66
4 Fiber-Reinforced Composites for Environmental Engineering 69
Gayatri T. Nadathur, Pintu Pandit and Kunal Singha
4.1 Introduction 69
4.2 Strength of FRC Materials 72
4.3 Composite Manufacturing 74
4.4 Environmental Sustainability of Composites 77
4.5 Green Composites 80
4.6 Composite Filtration Membranes/Media 85
4.7 Liquid (Water or Oil) Filtration Media 86
4.8 Air Filtration Media 88
4.9 Filtration/Separation of Oil-Water Liquid Mixtures 88
4.10 FRCs for Noise Reduction 91
4.11 Fire Resistant FRCs 92
4.12 Conclusions 94
References 94
5 Polymer Nanocomposites: Alternative to Reduce Environmental Impact of
Non-Biodegradable Food Packaging Materials 99
Shiji Mathew and Radhakrishnan EK
5.1 Introduction 99
5.2 Role of Food Packaging Materials 101
5.3 Environmental Impact of Food Packaging 102
5.4 Polymer Nanocomposites 103
5.5 Biopolymers as Packaging Materials 104
5.6 Advantages of Biopolymers 105
5.7 Reinforcements used in Bionanocomposites 106
5.7.1 Nanoclays-Layered Clays/Silicates 106
5.7.2 Metal and Metal Oxide Nanoparticles 107
5.8 Bionanocomposites 108
5.9 Polysaccharide-Based Bionanocomposites 108
5.9.1 Starch-Based Packaging Material 108
5.10 Protein-Based Bionanocomposites 109
5.10.1 Gelatin Bionanocomposites 110
5.11 Biodegradable Synthetic Polymers 111
5.11.1 Polylactic Acid-Based Packaging Materials 111
5.11.2 Poly (Vinyl) Alcohol-Based Packaging Materials 112
5.12 Properties of Bionanocomposites 113
5.12.1 Mechanical Properties 115
5.12.2 Barrier Properties 115
5.12.3 Thermal Properties 117
5.12.4 Biodegradability 117
5.13 Changes Occurring during Biodegradation Process 119
5.14 Methods of Preparation of Bionanocomposites 120
5.14.1 In Situ Polymerization 120
5.14.2 Melt Intercalation Technique 120
5.14.3 Solvent Casting 121
5.15 Bionanocomposite Characterization 121
5.16 Conclusions 123
References 124
6 Environmental Science and Engineering Applications of Polymer and
Nanocellulose-Based Nanocomposites 135
Niranjan Thondavada, Rajasekhar Chokkareddy, Nuthalapati Venkatasubba Naidu
and G. G. Redhi
6.1 Introduction 136
6.2 Preparation of Polymer Nanocomposites 137
6.2.1 Direct Compounding 137
6.2.2 In-Situ Synthesis 138
6.3 Environmental Applications of PNCs 141
6.3.1 Catalytic and Redox Degradation of Pollutants 141
6.4 Biocatalytic Nanocomposites 142
6.4.1 Adsorption of Pollutants 151
6.5 Preparation of Nanocellulose 155
6.5.1 Nanocellulose-Based Nanocomposites 158
6.5.2 Antimicrobial Filters 162
6.5.3 Catalysis 162
6.5.4 Energy Applications 164
6.6 Conclusion 166
References 166
7 Nanocomposites of ZnO for Water Remediation 179
Parita Basnet and Somenath Chatterjee
7.1 Introduction 180
7.2 Aqueous Pollutants 182
7.3 Types of ZnO NCs 184
7.3.1 M-ZnO NCs as Photocatalyst 185
7.3.1.1 Metal Doped/Incorporated-ZnO NCs as Photocatalyst 185
7.3.1.2 Metal Deposited-ZnO NCs as Photocatalyst 188
7.3.2 Semiconductor-ZnO (S-ZnO) NCs as Photocatalyst 191
7.3.3 Polymer-ZnO (P-ZnO) NCs as Photocatalyst 193
7.3.4 Mixed Metal, Semiconductor and/or Polymer-ZnO NCs as Photocatalyst
197
7.3.4.1 Bimetallic-ZnO NCs as Photocatalyst 197
7.3.4.2 Metal-Semiconductor-ZnO (M-S-ZnO) NCs as Photocatalyst 199
7.4 Other Applications Related to the Photocatalytic Activities of ZnO NCs
201
7.5 Conclusion 206
7.6 Acknowledgement 222
References 222
8 Degradation of Organic Compounds by the Applications of Metal
Nanocomposites 235
Iffat Zareen Ahmad and Mohammed Kuddus
8.1 Introduction 237
8.2 Metal Oxides Used in Photocatalytic Degradation of Organic Pollutants
in Wastewater 244
8.2.1 Titanium Dioxide 244
8.2.2 Graphene Oxide 248
8.2.3 Zinc Oxide 249
8.2.4 Cesium Oxide 250
8.2.5 Silver Salts 250
8.2.6 Bismuth Compounds 251
8.2.7 Copper Compounds 252
8.2.8 Gold Compounds 254
8.3 Conclusion 255
References 256
9 Nanocomposites in Environmental Engineering 263
Mohammad Nadeem Lone and Irshad A. Wani
9.1 Introduction 264
9.2 Polymeric Nanocomposites 265
9.2.1 PNC's as Catalysts and Redox Active Media 265
9.2.2 PNC's for Adsorption and Degradation of Pollutants 285
9.3 Magnetic Polymer Based Nanocomposites 287
9.3.1 Types of Magnetic Nanocomposites 287
9.3.1.1 Type I: Inorganic Core Shell Nanocomposites 287
9.3.1.2 Type II: Self Assembled Colloidal Nanocomposites 288
9.3.1.3 Type III: Organic-Inorganic Nanocomposites 288
9.3.2 Synthesis of Magnetic Nanocomposites (MNC's) 289
9.3.2.1 Ex-Situ Synthesis 289
9.3.2.2 In-Situ Synthesis 290
9.3.3 Environmental Applications 294
9.3.3.1 Elimination of Heavy Metals 294
9.3.3.2 Elimination of Toxic Dyes and Effluents 297
9.3.3.3 Removal of Oil from Water 298
9.4 Future Perspectives and Conclusion 299
References 300
10 Bio-Composites from Food Wastes 319
Pintu Choudhary, Priyanga Suriyamoorthy, J. A. Moses and C.
Anandharamakrishnan
10.1 Introduction 319
10.2 Vegetables Waste 326
10.3 Fruit Waste 329
10.4 Coffee and Tea Waste 332
10.5 Animal-Based Food Waste 333
10.6 Food Grain Waste 337
References 339
11 Properties of Food Packaging Biocomposites and Its Impact on Environment
347
K.S. Yoha, M. Maria Leena, J.A. Moses and C. Anandharamakrishnan
11.1 Introduction 348
11.2 Importance of Food Packaging 350
11.3 Packaging Materials Impact on Environment 351
11.4 Risks of Elemental Migration from Packaging Material 352
11.4.1 Contact Migration 354
11.4.2 Non-Contact Migration 355
11.5 Selection of Food Packaging Material 355
11.6 Biodegradable Polymers 356
11.6.1 Polysaccharides 358
11.6.1.1 Sugar-Based Biopolymers 358
11.6.1.2 Starch-Based Biopolymers 358
11.6.1.3 Cellulose-Based Biopolymers 359
11.6.1.4 Pectin 359
11.6.2 Proteins 360
11.6.2.1 Collagen 360
11.6.2.2 Casein 361
11.6.2.3 Zein 361
11.6.2.4 Gluten 362
11.6.3 Seaweed Polymers 362
11.6.4 Plants Seed Mucilage 366
11.6.5 Micro-Organisms Synthesized Biopolymers 367
11.6.5.1 Polyhydroxyalkanoates (PHA) 367
11.6.5.2 Polyhydroxybutyrate (PHB) 367
11.6.5.3 Polyhydroxybutyrate-Co-Hydroxyvalerate (PHBV) 368
11.6.6 Bio-Derived Synthetic Polymers 368
11.6.6.1 Poly-Lactic Acid (PLA) 368
11.6.6.2 Poly Glycolic Acid (PGA) 369
11.6.6.3 Poly-Lactic-Co-Glycolic Acid (PLGA) 370
11.7 Bio-Based Polymeric Composite Materials 370
11.7.1 Starch-Based Composites 370
11.7.2 Poly(Hydroxyalkanoate)-Based Composites 371
11.8 Thermal and Mechanical Properties of Composites 371
11.9 Surface Modifications of Biocomposites 372
11.10 Conclusion 373
References 374
12 Environmentally Benign Protocols for the Synthesis of Transition Metal
Oxide: A Brief Outlook 383
Neha D. Desai, Kishorkumar V. Khot, Tukaram D. Dongale, Atul Khot and
Popatrao N. Bhosale
12.1 Introduction 384
12.2 Titanium Dioxide (TiO2) 385
12.2.1 Introduction 385
12.2.2 Method of Synthesis 387
12.2.3 Experimental of TiO2 Thin Film 389
12.2.4 Results and Discussions 389
12.3 Molybdenum Trioxide (MoO3) 392
12.3.1 Introduction 392
12.3.2 Experimental 394
12.3.3 Growth Mechanism 395
12.3.4 Structural Analysis 396
12.4 Zinc Oxide (ZnO) 398
12.4.1 Introduction 398
12.4.2 Experimental 400
12.4.3 TiO2 Memristor Devices 404
12.4.4 ZnO Memristor Devices 406
References 409
Index 421
Preface xvii
1 Composites: Types, Method of Preparation and Application as An Emerging
Tool for Environmental Remediation 1
Bushra Fatima, Geetanjali Rathi, Rabia Ahmad and Saif Ali Chaudhry
1.1 Introduction 2
1.2 Classification Based on Matrix 4
1.2.1 Metal Matrix Composites (MMC) 5
1.2.2 Methods for Synthesizing Metal-Matrix Composites 5
1.2.3 Bonding in Metal Matrix Composites 9
1.2.4 Applications of Metal Matrix Composites 10
1.3 Polymer Matrix Composites 10
1.3.1 Classification of Polymer Matrix Composites 12
1.3.2 Methods for Synthesizing of Polymer Composites 13
1.3.3 Bonding in Polymer Matrix Composites 15
1.3.4 Applications of Polymer Matrix Composites 16
1.4 Ceramic Matrix Composites 16
1.4.1 Methods for Synthesizing Ceramic Matrix Composites 17
1.4.2 Advantage of Ceramic Matrix Composites 18
1.4.3 Disadvantages of Ceramic Matrix Composites 18
1.4.4 Applications of Ceramic Matrix Composites 18
1.5 Classification Based on Reinforcement 19
1.5.1 Fiber-Reinforced Composites 19
1.5.2 Particle Reinforced Composites 20
1.5.3 Structural Reinforced Composites 20
1.6 Recent Advancement in Composites 21
1.6.1 Methods for Synthesizing Green Composites 22
1.6.2 Advantages and Disadvantages of Green Composites over Traditional
Composites 22
1.6.3 Applications of Green Composites 22
1.7 Advantages of Composites 23
1.8 Disadvantages of Composites 23
1.9 Conclusion 24
1.10 Future Prospects 24
1.11 Acknowledgement 25
References 25
2 Applications of Composites Materials for Environmental Aspects 33
Pintu Pandit, Kunal Singha, Akshay Jadhav, T.N. Gayatri and Utpal Dhara
2.1 Introduction 34
2.2 History of Composites for Eco-Friendly Engineering 35
2.3 Composites for Greenhouses 36
2.4 Polymers have been Reinforced by Fiber (FRP) for Greenhouse 36
2.4.1 Composites Employed in Controlling Humidity in the Home which is
Green 36
2.4.2 Composite Films for Optical Transmission of Greenhouse 37
2.5 Composites Employed in Acoustic Applications 37
2.6 Natural Fiber Composites 40
2.6.1 Pretreatment of Natural Fiber 40
2.6.2 Factors Impacting on Bodily Functioning of Natural Fiber Composites
41
2.6.2.1 Fiber Selection 41
2.6.2.2 Matrix Selection 42
2.6.2.3 Interface Strength 42
2.6.2.4 Fiber Orientation 42
2.6.3 Jute-Coir Composites for Constructions 43
2.6.4 Bamboo Composites for Construction 43
2.7 Effective Factors for Low Frequency Acoustic Absorption 44
2.7.1 Fiber Size 44
2.7.2 Feed Size 45
2.7.3 Majority Density 45
2.7.4 Sample Layer Thickness 46
2.8 Composites Employed in Wind Energy 46
2.9 Composites Used in Wind Turbines 47
2.9.1 Impact of Wind Hit on the Composite Material 47
2.10 Composite Materials for the Marine Environment 48
2.11 Composite Materials for Aerospace Engineering 49
2.12 Composites Materials for Civil Engineering 50
2.13 Composite Materials Employed in Solar Energy Panels 50
2.14 Conclusions 51
References 52
3 The Application of Mechano-Chemistry in Composite Preparation 57
S. C. Onwubu, P. S. Mdluli, S. Singh, and M. U. Makgobole
3.1 Introduction 57
3.2 The Science of Mechanochemistry 58
3.3 Brief History of Mechanochemistry Application 59
3.4 Mechanochemical Tools 60
3.5 Applications of Mechanochemistry in the Milling of Eggshell Powder 63
3.6 Conclusions 65
References 66
4 Fiber-Reinforced Composites for Environmental Engineering 69
Gayatri T. Nadathur, Pintu Pandit and Kunal Singha
4.1 Introduction 69
4.2 Strength of FRC Materials 72
4.3 Composite Manufacturing 74
4.4 Environmental Sustainability of Composites 77
4.5 Green Composites 80
4.6 Composite Filtration Membranes/Media 85
4.7 Liquid (Water or Oil) Filtration Media 86
4.8 Air Filtration Media 88
4.9 Filtration/Separation of Oil-Water Liquid Mixtures 88
4.10 FRCs for Noise Reduction 91
4.11 Fire Resistant FRCs 92
4.12 Conclusions 94
References 94
5 Polymer Nanocomposites: Alternative to Reduce Environmental Impact of
Non-Biodegradable Food Packaging Materials 99
Shiji Mathew and Radhakrishnan EK
5.1 Introduction 99
5.2 Role of Food Packaging Materials 101
5.3 Environmental Impact of Food Packaging 102
5.4 Polymer Nanocomposites 103
5.5 Biopolymers as Packaging Materials 104
5.6 Advantages of Biopolymers 105
5.7 Reinforcements used in Bionanocomposites 106
5.7.1 Nanoclays-Layered Clays/Silicates 106
5.7.2 Metal and Metal Oxide Nanoparticles 107
5.8 Bionanocomposites 108
5.9 Polysaccharide-Based Bionanocomposites 108
5.9.1 Starch-Based Packaging Material 108
5.10 Protein-Based Bionanocomposites 109
5.10.1 Gelatin Bionanocomposites 110
5.11 Biodegradable Synthetic Polymers 111
5.11.1 Polylactic Acid-Based Packaging Materials 111
5.11.2 Poly (Vinyl) Alcohol-Based Packaging Materials 112
5.12 Properties of Bionanocomposites 113
5.12.1 Mechanical Properties 115
5.12.2 Barrier Properties 115
5.12.3 Thermal Properties 117
5.12.4 Biodegradability 117
5.13 Changes Occurring during Biodegradation Process 119
5.14 Methods of Preparation of Bionanocomposites 120
5.14.1 In Situ Polymerization 120
5.14.2 Melt Intercalation Technique 120
5.14.3 Solvent Casting 121
5.15 Bionanocomposite Characterization 121
5.16 Conclusions 123
References 124
6 Environmental Science and Engineering Applications of Polymer and
Nanocellulose-Based Nanocomposites 135
Niranjan Thondavada, Rajasekhar Chokkareddy, Nuthalapati Venkatasubba Naidu
and G. G. Redhi
6.1 Introduction 136
6.2 Preparation of Polymer Nanocomposites 137
6.2.1 Direct Compounding 137
6.2.2 In-Situ Synthesis 138
6.3 Environmental Applications of PNCs 141
6.3.1 Catalytic and Redox Degradation of Pollutants 141
6.4 Biocatalytic Nanocomposites 142
6.4.1 Adsorption of Pollutants 151
6.5 Preparation of Nanocellulose 155
6.5.1 Nanocellulose-Based Nanocomposites 158
6.5.2 Antimicrobial Filters 162
6.5.3 Catalysis 162
6.5.4 Energy Applications 164
6.6 Conclusion 166
References 166
7 Nanocomposites of ZnO for Water Remediation 179
Parita Basnet and Somenath Chatterjee
7.1 Introduction 180
7.2 Aqueous Pollutants 182
7.3 Types of ZnO NCs 184
7.3.1 M-ZnO NCs as Photocatalyst 185
7.3.1.1 Metal Doped/Incorporated-ZnO NCs as Photocatalyst 185
7.3.1.2 Metal Deposited-ZnO NCs as Photocatalyst 188
7.3.2 Semiconductor-ZnO (S-ZnO) NCs as Photocatalyst 191
7.3.3 Polymer-ZnO (P-ZnO) NCs as Photocatalyst 193
7.3.4 Mixed Metal, Semiconductor and/or Polymer-ZnO NCs as Photocatalyst
197
7.3.4.1 Bimetallic-ZnO NCs as Photocatalyst 197
7.3.4.2 Metal-Semiconductor-ZnO (M-S-ZnO) NCs as Photocatalyst 199
7.4 Other Applications Related to the Photocatalytic Activities of ZnO NCs
201
7.5 Conclusion 206
7.6 Acknowledgement 222
References 222
8 Degradation of Organic Compounds by the Applications of Metal
Nanocomposites 235
Iffat Zareen Ahmad and Mohammed Kuddus
8.1 Introduction 237
8.2 Metal Oxides Used in Photocatalytic Degradation of Organic Pollutants
in Wastewater 244
8.2.1 Titanium Dioxide 244
8.2.2 Graphene Oxide 248
8.2.3 Zinc Oxide 249
8.2.4 Cesium Oxide 250
8.2.5 Silver Salts 250
8.2.6 Bismuth Compounds 251
8.2.7 Copper Compounds 252
8.2.8 Gold Compounds 254
8.3 Conclusion 255
References 256
9 Nanocomposites in Environmental Engineering 263
Mohammad Nadeem Lone and Irshad A. Wani
9.1 Introduction 264
9.2 Polymeric Nanocomposites 265
9.2.1 PNC's as Catalysts and Redox Active Media 265
9.2.2 PNC's for Adsorption and Degradation of Pollutants 285
9.3 Magnetic Polymer Based Nanocomposites 287
9.3.1 Types of Magnetic Nanocomposites 287
9.3.1.1 Type I: Inorganic Core Shell Nanocomposites 287
9.3.1.2 Type II: Self Assembled Colloidal Nanocomposites 288
9.3.1.3 Type III: Organic-Inorganic Nanocomposites 288
9.3.2 Synthesis of Magnetic Nanocomposites (MNC's) 289
9.3.2.1 Ex-Situ Synthesis 289
9.3.2.2 In-Situ Synthesis 290
9.3.3 Environmental Applications 294
9.3.3.1 Elimination of Heavy Metals 294
9.3.3.2 Elimination of Toxic Dyes and Effluents 297
9.3.3.3 Removal of Oil from Water 298
9.4 Future Perspectives and Conclusion 299
References 300
10 Bio-Composites from Food Wastes 319
Pintu Choudhary, Priyanga Suriyamoorthy, J. A. Moses and C.
Anandharamakrishnan
10.1 Introduction 319
10.2 Vegetables Waste 326
10.3 Fruit Waste 329
10.4 Coffee and Tea Waste 332
10.5 Animal-Based Food Waste 333
10.6 Food Grain Waste 337
References 339
11 Properties of Food Packaging Biocomposites and Its Impact on Environment
347
K.S. Yoha, M. Maria Leena, J.A. Moses and C. Anandharamakrishnan
11.1 Introduction 348
11.2 Importance of Food Packaging 350
11.3 Packaging Materials Impact on Environment 351
11.4 Risks of Elemental Migration from Packaging Material 352
11.4.1 Contact Migration 354
11.4.2 Non-Contact Migration 355
11.5 Selection of Food Packaging Material 355
11.6 Biodegradable Polymers 356
11.6.1 Polysaccharides 358
11.6.1.1 Sugar-Based Biopolymers 358
11.6.1.2 Starch-Based Biopolymers 358
11.6.1.3 Cellulose-Based Biopolymers 359
11.6.1.4 Pectin 359
11.6.2 Proteins 360
11.6.2.1 Collagen 360
11.6.2.2 Casein 361
11.6.2.3 Zein 361
11.6.2.4 Gluten 362
11.6.3 Seaweed Polymers 362
11.6.4 Plants Seed Mucilage 366
11.6.5 Micro-Organisms Synthesized Biopolymers 367
11.6.5.1 Polyhydroxyalkanoates (PHA) 367
11.6.5.2 Polyhydroxybutyrate (PHB) 367
11.6.5.3 Polyhydroxybutyrate-Co-Hydroxyvalerate (PHBV) 368
11.6.6 Bio-Derived Synthetic Polymers 368
11.6.6.1 Poly-Lactic Acid (PLA) 368
11.6.6.2 Poly Glycolic Acid (PGA) 369
11.6.6.3 Poly-Lactic-Co-Glycolic Acid (PLGA) 370
11.7 Bio-Based Polymeric Composite Materials 370
11.7.1 Starch-Based Composites 370
11.7.2 Poly(Hydroxyalkanoate)-Based Composites 371
11.8 Thermal and Mechanical Properties of Composites 371
11.9 Surface Modifications of Biocomposites 372
11.10 Conclusion 373
References 374
12 Environmentally Benign Protocols for the Synthesis of Transition Metal
Oxide: A Brief Outlook 383
Neha D. Desai, Kishorkumar V. Khot, Tukaram D. Dongale, Atul Khot and
Popatrao N. Bhosale
12.1 Introduction 384
12.2 Titanium Dioxide (TiO2) 385
12.2.1 Introduction 385
12.2.2 Method of Synthesis 387
12.2.3 Experimental of TiO2 Thin Film 389
12.2.4 Results and Discussions 389
12.3 Molybdenum Trioxide (MoO3) 392
12.3.1 Introduction 392
12.3.2 Experimental 394
12.3.3 Growth Mechanism 395
12.3.4 Structural Analysis 396
12.4 Zinc Oxide (ZnO) 398
12.4.1 Introduction 398
12.4.2 Experimental 400
12.4.3 TiO2 Memristor Devices 404
12.4.4 ZnO Memristor Devices 406
References 409
Index 421
1 Composites: Types, Method of Preparation and Application as An Emerging
Tool for Environmental Remediation 1
Bushra Fatima, Geetanjali Rathi, Rabia Ahmad and Saif Ali Chaudhry
1.1 Introduction 2
1.2 Classification Based on Matrix 4
1.2.1 Metal Matrix Composites (MMC) 5
1.2.2 Methods for Synthesizing Metal-Matrix Composites 5
1.2.3 Bonding in Metal Matrix Composites 9
1.2.4 Applications of Metal Matrix Composites 10
1.3 Polymer Matrix Composites 10
1.3.1 Classification of Polymer Matrix Composites 12
1.3.2 Methods for Synthesizing of Polymer Composites 13
1.3.3 Bonding in Polymer Matrix Composites 15
1.3.4 Applications of Polymer Matrix Composites 16
1.4 Ceramic Matrix Composites 16
1.4.1 Methods for Synthesizing Ceramic Matrix Composites 17
1.4.2 Advantage of Ceramic Matrix Composites 18
1.4.3 Disadvantages of Ceramic Matrix Composites 18
1.4.4 Applications of Ceramic Matrix Composites 18
1.5 Classification Based on Reinforcement 19
1.5.1 Fiber-Reinforced Composites 19
1.5.2 Particle Reinforced Composites 20
1.5.3 Structural Reinforced Composites 20
1.6 Recent Advancement in Composites 21
1.6.1 Methods for Synthesizing Green Composites 22
1.6.2 Advantages and Disadvantages of Green Composites over Traditional
Composites 22
1.6.3 Applications of Green Composites 22
1.7 Advantages of Composites 23
1.8 Disadvantages of Composites 23
1.9 Conclusion 24
1.10 Future Prospects 24
1.11 Acknowledgement 25
References 25
2 Applications of Composites Materials for Environmental Aspects 33
Pintu Pandit, Kunal Singha, Akshay Jadhav, T.N. Gayatri and Utpal Dhara
2.1 Introduction 34
2.2 History of Composites for Eco-Friendly Engineering 35
2.3 Composites for Greenhouses 36
2.4 Polymers have been Reinforced by Fiber (FRP) for Greenhouse 36
2.4.1 Composites Employed in Controlling Humidity in the Home which is
Green 36
2.4.2 Composite Films for Optical Transmission of Greenhouse 37
2.5 Composites Employed in Acoustic Applications 37
2.6 Natural Fiber Composites 40
2.6.1 Pretreatment of Natural Fiber 40
2.6.2 Factors Impacting on Bodily Functioning of Natural Fiber Composites
41
2.6.2.1 Fiber Selection 41
2.6.2.2 Matrix Selection 42
2.6.2.3 Interface Strength 42
2.6.2.4 Fiber Orientation 42
2.6.3 Jute-Coir Composites for Constructions 43
2.6.4 Bamboo Composites for Construction 43
2.7 Effective Factors for Low Frequency Acoustic Absorption 44
2.7.1 Fiber Size 44
2.7.2 Feed Size 45
2.7.3 Majority Density 45
2.7.4 Sample Layer Thickness 46
2.8 Composites Employed in Wind Energy 46
2.9 Composites Used in Wind Turbines 47
2.9.1 Impact of Wind Hit on the Composite Material 47
2.10 Composite Materials for the Marine Environment 48
2.11 Composite Materials for Aerospace Engineering 49
2.12 Composites Materials for Civil Engineering 50
2.13 Composite Materials Employed in Solar Energy Panels 50
2.14 Conclusions 51
References 52
3 The Application of Mechano-Chemistry in Composite Preparation 57
S. C. Onwubu, P. S. Mdluli, S. Singh, and M. U. Makgobole
3.1 Introduction 57
3.2 The Science of Mechanochemistry 58
3.3 Brief History of Mechanochemistry Application 59
3.4 Mechanochemical Tools 60
3.5 Applications of Mechanochemistry in the Milling of Eggshell Powder 63
3.6 Conclusions 65
References 66
4 Fiber-Reinforced Composites for Environmental Engineering 69
Gayatri T. Nadathur, Pintu Pandit and Kunal Singha
4.1 Introduction 69
4.2 Strength of FRC Materials 72
4.3 Composite Manufacturing 74
4.4 Environmental Sustainability of Composites 77
4.5 Green Composites 80
4.6 Composite Filtration Membranes/Media 85
4.7 Liquid (Water or Oil) Filtration Media 86
4.8 Air Filtration Media 88
4.9 Filtration/Separation of Oil-Water Liquid Mixtures 88
4.10 FRCs for Noise Reduction 91
4.11 Fire Resistant FRCs 92
4.12 Conclusions 94
References 94
5 Polymer Nanocomposites: Alternative to Reduce Environmental Impact of
Non-Biodegradable Food Packaging Materials 99
Shiji Mathew and Radhakrishnan EK
5.1 Introduction 99
5.2 Role of Food Packaging Materials 101
5.3 Environmental Impact of Food Packaging 102
5.4 Polymer Nanocomposites 103
5.5 Biopolymers as Packaging Materials 104
5.6 Advantages of Biopolymers 105
5.7 Reinforcements used in Bionanocomposites 106
5.7.1 Nanoclays-Layered Clays/Silicates 106
5.7.2 Metal and Metal Oxide Nanoparticles 107
5.8 Bionanocomposites 108
5.9 Polysaccharide-Based Bionanocomposites 108
5.9.1 Starch-Based Packaging Material 108
5.10 Protein-Based Bionanocomposites 109
5.10.1 Gelatin Bionanocomposites 110
5.11 Biodegradable Synthetic Polymers 111
5.11.1 Polylactic Acid-Based Packaging Materials 111
5.11.2 Poly (Vinyl) Alcohol-Based Packaging Materials 112
5.12 Properties of Bionanocomposites 113
5.12.1 Mechanical Properties 115
5.12.2 Barrier Properties 115
5.12.3 Thermal Properties 117
5.12.4 Biodegradability 117
5.13 Changes Occurring during Biodegradation Process 119
5.14 Methods of Preparation of Bionanocomposites 120
5.14.1 In Situ Polymerization 120
5.14.2 Melt Intercalation Technique 120
5.14.3 Solvent Casting 121
5.15 Bionanocomposite Characterization 121
5.16 Conclusions 123
References 124
6 Environmental Science and Engineering Applications of Polymer and
Nanocellulose-Based Nanocomposites 135
Niranjan Thondavada, Rajasekhar Chokkareddy, Nuthalapati Venkatasubba Naidu
and G. G. Redhi
6.1 Introduction 136
6.2 Preparation of Polymer Nanocomposites 137
6.2.1 Direct Compounding 137
6.2.2 In-Situ Synthesis 138
6.3 Environmental Applications of PNCs 141
6.3.1 Catalytic and Redox Degradation of Pollutants 141
6.4 Biocatalytic Nanocomposites 142
6.4.1 Adsorption of Pollutants 151
6.5 Preparation of Nanocellulose 155
6.5.1 Nanocellulose-Based Nanocomposites 158
6.5.2 Antimicrobial Filters 162
6.5.3 Catalysis 162
6.5.4 Energy Applications 164
6.6 Conclusion 166
References 166
7 Nanocomposites of ZnO for Water Remediation 179
Parita Basnet and Somenath Chatterjee
7.1 Introduction 180
7.2 Aqueous Pollutants 182
7.3 Types of ZnO NCs 184
7.3.1 M-ZnO NCs as Photocatalyst 185
7.3.1.1 Metal Doped/Incorporated-ZnO NCs as Photocatalyst 185
7.3.1.2 Metal Deposited-ZnO NCs as Photocatalyst 188
7.3.2 Semiconductor-ZnO (S-ZnO) NCs as Photocatalyst 191
7.3.3 Polymer-ZnO (P-ZnO) NCs as Photocatalyst 193
7.3.4 Mixed Metal, Semiconductor and/or Polymer-ZnO NCs as Photocatalyst
197
7.3.4.1 Bimetallic-ZnO NCs as Photocatalyst 197
7.3.4.2 Metal-Semiconductor-ZnO (M-S-ZnO) NCs as Photocatalyst 199
7.4 Other Applications Related to the Photocatalytic Activities of ZnO NCs
201
7.5 Conclusion 206
7.6 Acknowledgement 222
References 222
8 Degradation of Organic Compounds by the Applications of Metal
Nanocomposites 235
Iffat Zareen Ahmad and Mohammed Kuddus
8.1 Introduction 237
8.2 Metal Oxides Used in Photocatalytic Degradation of Organic Pollutants
in Wastewater 244
8.2.1 Titanium Dioxide 244
8.2.2 Graphene Oxide 248
8.2.3 Zinc Oxide 249
8.2.4 Cesium Oxide 250
8.2.5 Silver Salts 250
8.2.6 Bismuth Compounds 251
8.2.7 Copper Compounds 252
8.2.8 Gold Compounds 254
8.3 Conclusion 255
References 256
9 Nanocomposites in Environmental Engineering 263
Mohammad Nadeem Lone and Irshad A. Wani
9.1 Introduction 264
9.2 Polymeric Nanocomposites 265
9.2.1 PNC's as Catalysts and Redox Active Media 265
9.2.2 PNC's for Adsorption and Degradation of Pollutants 285
9.3 Magnetic Polymer Based Nanocomposites 287
9.3.1 Types of Magnetic Nanocomposites 287
9.3.1.1 Type I: Inorganic Core Shell Nanocomposites 287
9.3.1.2 Type II: Self Assembled Colloidal Nanocomposites 288
9.3.1.3 Type III: Organic-Inorganic Nanocomposites 288
9.3.2 Synthesis of Magnetic Nanocomposites (MNC's) 289
9.3.2.1 Ex-Situ Synthesis 289
9.3.2.2 In-Situ Synthesis 290
9.3.3 Environmental Applications 294
9.3.3.1 Elimination of Heavy Metals 294
9.3.3.2 Elimination of Toxic Dyes and Effluents 297
9.3.3.3 Removal of Oil from Water 298
9.4 Future Perspectives and Conclusion 299
References 300
10 Bio-Composites from Food Wastes 319
Pintu Choudhary, Priyanga Suriyamoorthy, J. A. Moses and C.
Anandharamakrishnan
10.1 Introduction 319
10.2 Vegetables Waste 326
10.3 Fruit Waste 329
10.4 Coffee and Tea Waste 332
10.5 Animal-Based Food Waste 333
10.6 Food Grain Waste 337
References 339
11 Properties of Food Packaging Biocomposites and Its Impact on Environment
347
K.S. Yoha, M. Maria Leena, J.A. Moses and C. Anandharamakrishnan
11.1 Introduction 348
11.2 Importance of Food Packaging 350
11.3 Packaging Materials Impact on Environment 351
11.4 Risks of Elemental Migration from Packaging Material 352
11.4.1 Contact Migration 354
11.4.2 Non-Contact Migration 355
11.5 Selection of Food Packaging Material 355
11.6 Biodegradable Polymers 356
11.6.1 Polysaccharides 358
11.6.1.1 Sugar-Based Biopolymers 358
11.6.1.2 Starch-Based Biopolymers 358
11.6.1.3 Cellulose-Based Biopolymers 359
11.6.1.4 Pectin 359
11.6.2 Proteins 360
11.6.2.1 Collagen 360
11.6.2.2 Casein 361
11.6.2.3 Zein 361
11.6.2.4 Gluten 362
11.6.3 Seaweed Polymers 362
11.6.4 Plants Seed Mucilage 366
11.6.5 Micro-Organisms Synthesized Biopolymers 367
11.6.5.1 Polyhydroxyalkanoates (PHA) 367
11.6.5.2 Polyhydroxybutyrate (PHB) 367
11.6.5.3 Polyhydroxybutyrate-Co-Hydroxyvalerate (PHBV) 368
11.6.6 Bio-Derived Synthetic Polymers 368
11.6.6.1 Poly-Lactic Acid (PLA) 368
11.6.6.2 Poly Glycolic Acid (PGA) 369
11.6.6.3 Poly-Lactic-Co-Glycolic Acid (PLGA) 370
11.7 Bio-Based Polymeric Composite Materials 370
11.7.1 Starch-Based Composites 370
11.7.2 Poly(Hydroxyalkanoate)-Based Composites 371
11.8 Thermal and Mechanical Properties of Composites 371
11.9 Surface Modifications of Biocomposites 372
11.10 Conclusion 373
References 374
12 Environmentally Benign Protocols for the Synthesis of Transition Metal
Oxide: A Brief Outlook 383
Neha D. Desai, Kishorkumar V. Khot, Tukaram D. Dongale, Atul Khot and
Popatrao N. Bhosale
12.1 Introduction 384
12.2 Titanium Dioxide (TiO2) 385
12.2.1 Introduction 385
12.2.2 Method of Synthesis 387
12.2.3 Experimental of TiO2 Thin Film 389
12.2.4 Results and Discussions 389
12.3 Molybdenum Trioxide (MoO3) 392
12.3.1 Introduction 392
12.3.2 Experimental 394
12.3.3 Growth Mechanism 395
12.3.4 Structural Analysis 396
12.4 Zinc Oxide (ZnO) 398
12.4.1 Introduction 398
12.4.2 Experimental 400
12.4.3 TiO2 Memristor Devices 404
12.4.4 ZnO Memristor Devices 406
References 409
Index 421