T. J. Chung
Computational Fluid Dynamics
T. J. Chung
Computational Fluid Dynamics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Ranges from elementary concepts to state-of-the-art computational fluid dynamics techniques used to study and solve complex fluid flow problems.
Andere Kunden interessierten sich auch für
- Paul A. DurbinFluid Dynamics with a Computational Perspective65,99 €
- Anil W. DateIntroduction to Computational Fluid Dynamics95,99 €
- Clement KleinstreuerEngineering Fluid Dynamics83,99 €
- Paul A DurbinFluid Dynamics with a Computational Perspective131,99 €
- Pierre SagautHomogeneous Turbulence Dynamics179,99 €
- Maurizio BottoniPhysical Modeling and Computational Techniques for Thermal and Fluid-dynamics105,99 €
- Maurizio BottoniPhysical Modeling and Computational Techniques for Thermal and Fluid-dynamics145,99 €
-
-
-
Ranges from elementary concepts to state-of-the-art computational fluid dynamics techniques used to study and solve complex fluid flow problems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 1058
- Erscheinungstermin: 25. Juli 2014
- Englisch
- Abmessung: 260mm x 183mm x 61mm
- Gewicht: 2141g
- ISBN-13: 9780521769693
- ISBN-10: 0521769698
- Artikelnr.: 30519795
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 1058
- Erscheinungstermin: 25. Juli 2014
- Englisch
- Abmessung: 260mm x 183mm x 61mm
- Gewicht: 2141g
- ISBN-13: 9780521769693
- ISBN-10: 0521769698
- Artikelnr.: 30519795
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
T. J. Chung is Distinguished Professor Emeritus of Mechanical and Aerospace Engineering at the University of Alabama, Huntsville. His research interests include numerical simulation of quantum gravity, plasma dynamics in fusion reactors, hypersonic turbulent flows, computational fluid dynamics, continuum mechanics, numerical modeling of combustion and propulsion, fluid dynamics, and heat and mass transfer. He has also authored seven other books, including General Continuum Mechanics and Applied Continuum Mechanics, both published by Cambridge University Press.
Part I. Preliminaries: 1. Introduction
2. Governing equations
Part II. Finite Difference Methods: 3. Derivation of finite difference equations
4. Solution methods of finite difference equations
5. Incompressible viscous flows via finite difference methods
6. Compressible flows via finite difference methods
7. Finite volume methods via finite difference methods
Part III. Finite Element Methods: 8. Introduction to finite element methods
9. Finite element interpolation functions
10. Linear problems
11. Nonlinear problems/convection-dominated flows
12. Incompressible viscous flows via finite element methods
13. Compressible flows via finite element methods
14. Miscellaneous weighted residual methods
15. Finite volume methods via finite element methods
16. Relationships between finite differences and finite elements and other methods
Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation
18. Unstructured grid generation
19. Adaptive methods
20. Computing techniques
Part V. Applications: 21. Applications to turbulence
22. Applications to chemically reactive flows and combustion
23. Applications to acoustics
24. Applications to combined mode radiative heat transfer
25. Applications to multiphase flows
26. Applications to electromagnetic flows
27. Applications to relativistic astrophysical flows
Appendices.
2. Governing equations
Part II. Finite Difference Methods: 3. Derivation of finite difference equations
4. Solution methods of finite difference equations
5. Incompressible viscous flows via finite difference methods
6. Compressible flows via finite difference methods
7. Finite volume methods via finite difference methods
Part III. Finite Element Methods: 8. Introduction to finite element methods
9. Finite element interpolation functions
10. Linear problems
11. Nonlinear problems/convection-dominated flows
12. Incompressible viscous flows via finite element methods
13. Compressible flows via finite element methods
14. Miscellaneous weighted residual methods
15. Finite volume methods via finite element methods
16. Relationships between finite differences and finite elements and other methods
Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation
18. Unstructured grid generation
19. Adaptive methods
20. Computing techniques
Part V. Applications: 21. Applications to turbulence
22. Applications to chemically reactive flows and combustion
23. Applications to acoustics
24. Applications to combined mode radiative heat transfer
25. Applications to multiphase flows
26. Applications to electromagnetic flows
27. Applications to relativistic astrophysical flows
Appendices.
Part I. Preliminaries: 1. Introduction; 2. Governing equations; Part II. Finite Difference Methods: 3. Derivation of finite difference equations; 4. Solution methods of finite difference equations; 5. Incompressible viscous flows via finite difference methods; 6. Compressible flows via finite difference methods; 7. Finite volume methods via finite difference methods; Part III. Finite Element Methods: 8. Introduction to finite element methods; 9. Finite element interpolation functions; 10. Linear problems; 11. Nonlinear problems/convection-dominated flows; 12. Incompressible viscous flows via finite element methods; 13. Compressible flows via finite element methods; 14. Miscellaneous weighted residual methods; 15. Finite volume methods via finite element methods; 16. Relationships between finite differences and finite elements and other methods; Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation; 18. Unstructured grid generation; 19. Adaptive methods; 20. Computing techniques; Part V. Applications: 21. Applications to turbulence; 22. Applications to chemically reactive flows and combustion; 23. Applications to acoustics; 24. Applications to combined mode radiative heat transfer; 25. Applications to multiphase flows; 26. Applications to electromagnetic flows; 27. Applications to relativistic astrophysical flows; Appendices.
Part I. Preliminaries: 1. Introduction
2. Governing equations
Part II. Finite Difference Methods: 3. Derivation of finite difference equations
4. Solution methods of finite difference equations
5. Incompressible viscous flows via finite difference methods
6. Compressible flows via finite difference methods
7. Finite volume methods via finite difference methods
Part III. Finite Element Methods: 8. Introduction to finite element methods
9. Finite element interpolation functions
10. Linear problems
11. Nonlinear problems/convection-dominated flows
12. Incompressible viscous flows via finite element methods
13. Compressible flows via finite element methods
14. Miscellaneous weighted residual methods
15. Finite volume methods via finite element methods
16. Relationships between finite differences and finite elements and other methods
Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation
18. Unstructured grid generation
19. Adaptive methods
20. Computing techniques
Part V. Applications: 21. Applications to turbulence
22. Applications to chemically reactive flows and combustion
23. Applications to acoustics
24. Applications to combined mode radiative heat transfer
25. Applications to multiphase flows
26. Applications to electromagnetic flows
27. Applications to relativistic astrophysical flows
Appendices.
2. Governing equations
Part II. Finite Difference Methods: 3. Derivation of finite difference equations
4. Solution methods of finite difference equations
5. Incompressible viscous flows via finite difference methods
6. Compressible flows via finite difference methods
7. Finite volume methods via finite difference methods
Part III. Finite Element Methods: 8. Introduction to finite element methods
9. Finite element interpolation functions
10. Linear problems
11. Nonlinear problems/convection-dominated flows
12. Incompressible viscous flows via finite element methods
13. Compressible flows via finite element methods
14. Miscellaneous weighted residual methods
15. Finite volume methods via finite element methods
16. Relationships between finite differences and finite elements and other methods
Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation
18. Unstructured grid generation
19. Adaptive methods
20. Computing techniques
Part V. Applications: 21. Applications to turbulence
22. Applications to chemically reactive flows and combustion
23. Applications to acoustics
24. Applications to combined mode radiative heat transfer
25. Applications to multiphase flows
26. Applications to electromagnetic flows
27. Applications to relativistic astrophysical flows
Appendices.
Part I. Preliminaries: 1. Introduction; 2. Governing equations; Part II. Finite Difference Methods: 3. Derivation of finite difference equations; 4. Solution methods of finite difference equations; 5. Incompressible viscous flows via finite difference methods; 6. Compressible flows via finite difference methods; 7. Finite volume methods via finite difference methods; Part III. Finite Element Methods: 8. Introduction to finite element methods; 9. Finite element interpolation functions; 10. Linear problems; 11. Nonlinear problems/convection-dominated flows; 12. Incompressible viscous flows via finite element methods; 13. Compressible flows via finite element methods; 14. Miscellaneous weighted residual methods; 15. Finite volume methods via finite element methods; 16. Relationships between finite differences and finite elements and other methods; Part IV. Automatic Grid Generation, Adaptive Methods and Computing Techniques: 17. Structured grid generation; 18. Unstructured grid generation; 19. Adaptive methods; 20. Computing techniques; Part V. Applications: 21. Applications to turbulence; 22. Applications to chemically reactive flows and combustion; 23. Applications to acoustics; 24. Applications to combined mode radiative heat transfer; 25. Applications to multiphase flows; 26. Applications to electromagnetic flows; 27. Applications to relativistic astrophysical flows; Appendices.