Computational Intelligence for Genomics Data
Herausgeber: Pandey, Babita; Mahmud, Mufti; Pandey, Devendra Kumar; Tripathi, Suman Lata; Emilia Balas, Valentina
Computational Intelligence for Genomics Data
Herausgeber: Pandey, Babita; Mahmud, Mufti; Pandey, Devendra Kumar; Tripathi, Suman Lata; Emilia Balas, Valentina
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Computational Intelligence for Genomics Data presents an overview of machine learning and deep learning techniques being developed for the analysis of genomic data and the development of disease prediction models. The book focuses on machine and deep learning techniques applied to dimensionality reduction, feature extraction, and expressive gene selection. It includes designs, algorithms, and simulations on MATLAB and Python for larger prediction models and explores the possibilities of software and hardware-based applications and devices for genomic disease prediction. With the inclusion of…mehr
- Kenneth SooNumsense! Data Science for the Layman: No Math Added32,99 €
- Vishwanathan NarayananData Science and Machine Learning Interview Questions Using R23,99 €
- The Role of Blockchain in Disaster Management194,99 €
- S. SumathiComputational Intelligence Paradigms92,99 €
- Mohammed Z. Al-TaieSocial Network Analysis: An Introduction with an Extensive Implementation to a Large-Scale Online Network Using Pajek78,99 €
- Jack XuPractical Wpf Graphics Programming71,99 €
- John LevesqueProgramming for Hybrid Multi/Manycore MPP Systems68,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Elsevier Science
- Seitenzahl: 300
- Erscheinungstermin: 1. Februar 2025
- Englisch
- ISBN-13: 9780443300806
- ISBN-10: 0443300801
- Artikelnr.: 70982489
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Elsevier Science
- Seitenzahl: 300
- Erscheinungstermin: 1. Februar 2025
- Englisch
- ISBN-13: 9780443300806
- ISBN-10: 0443300801
- Artikelnr.: 70982489
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
1.1 Genomic data
1.2 Microarray analysis
1.3 Hub gene selection
1.4 Pathogenesis
1.5 Expressive gene
1.6 Gene reduction
1.7 Biomarkers
Section 2: Traditional Machine learning models for gene selection and
classification
2.1 Gene selection and liver disease classification using machine learning
2.2 Gene selection and Diabetic kidney disease classification using machine
learning
2.3. Gene selection and neurodegenerative disease classification using
machine learning
2.4. Gene selection and neuromuscular disorder classification using machine
learning
2.5. Gene selection and cancer classification using machine learning
2.6. Gene selection and disease classification using machine learning
Section3: Deep learning models for gene selection and classification
3.1 Gene selection and liver disease classification using deep learning
3.2 Gene selection and Diabetic kidney disease classification using machine
learning
3.3. Gene selection and neurodegenerative disease classification using deep
learning
3.4. Gene selection and neuromuscular disorder classification using deep
learning
3.5. Gene selection and cancer classification using deep learning
3.6. Gene selection and disease classification using deep learning
Section 4: Gene selection and classification using Artificial
intelligence-based optimization methods
4.1 Gene selection and liver disease classification using Particle warm
optimization, genetic algorithm, principal component analysis, wolf
optimization, ant colony optimization etc.
4.2 Gene selection and Diabetic kidney disease classification using
Particle warm optimization, genetic algorithm, principal component
analysis, wolf optimization, ant colony optimization etc.
4.3. Gene selection and neurodegenerative disease classification using
Particle warm optimization, genetic algorithm, principal component
analysis, wolf optimization, ant colony optimization etc.
4.4. Gene selection and neuromuscular disorder classification using
Particle warm optimization, genetic algorithm, principal component
analysis, wolf optimization, ant colony optimization etc.
4.5 Gene selection and cancer classification using Particle warm
optimization, genetic algorithm, principal component analysis, wolf
optimization, ant colony optimization etc.
Section 5: Explainable AI for computational biology
5.1. Use of LIME for diagnosis of disease
5.2. Use of Shape for diagnosis of disease
5.3. Quantitative graph theory for integrated omics data
Section 6: Applications of computational biology in healthcare
6.1 Diagnosis of liver disorder
6.2 Diagnosis of diabetic kidney disease
6.3 Diagnosis of cancer
6.4 Diagnosis of neurodegenerative disorder.
6.5 Diagnosis of neuromuscular disorder
6.6. Diagnosis of any other health disorder
1.1 Genomic data
1.2 Microarray analysis
1.3 Hub gene selection
1.4 Pathogenesis
1.5 Expressive gene
1.6 Gene reduction
1.7 Biomarkers
Section 2: Traditional Machine learning models for gene selection and
classification
2.1 Gene selection and liver disease classification using machine learning
2.2 Gene selection and Diabetic kidney disease classification using machine
learning
2.3. Gene selection and neurodegenerative disease classification using
machine learning
2.4. Gene selection and neuromuscular disorder classification using machine
learning
2.5. Gene selection and cancer classification using machine learning
2.6. Gene selection and disease classification using machine learning
Section3: Deep learning models for gene selection and classification
3.1 Gene selection and liver disease classification using deep learning
3.2 Gene selection and Diabetic kidney disease classification using machine
learning
3.3. Gene selection and neurodegenerative disease classification using deep
learning
3.4. Gene selection and neuromuscular disorder classification using deep
learning
3.5. Gene selection and cancer classification using deep learning
3.6. Gene selection and disease classification using deep learning
Section 4: Gene selection and classification using Artificial
intelligence-based optimization methods
4.1 Gene selection and liver disease classification using Particle warm
optimization, genetic algorithm, principal component analysis, wolf
optimization, ant colony optimization etc.
4.2 Gene selection and Diabetic kidney disease classification using
Particle warm optimization, genetic algorithm, principal component
analysis, wolf optimization, ant colony optimization etc.
4.3. Gene selection and neurodegenerative disease classification using
Particle warm optimization, genetic algorithm, principal component
analysis, wolf optimization, ant colony optimization etc.
4.4. Gene selection and neuromuscular disorder classification using
Particle warm optimization, genetic algorithm, principal component
analysis, wolf optimization, ant colony optimization etc.
4.5 Gene selection and cancer classification using Particle warm
optimization, genetic algorithm, principal component analysis, wolf
optimization, ant colony optimization etc.
Section 5: Explainable AI for computational biology
5.1. Use of LIME for diagnosis of disease
5.2. Use of Shape for diagnosis of disease
5.3. Quantitative graph theory for integrated omics data
Section 6: Applications of computational biology in healthcare
6.1 Diagnosis of liver disorder
6.2 Diagnosis of diabetic kidney disease
6.3 Diagnosis of cancer
6.4 Diagnosis of neurodegenerative disorder.
6.5 Diagnosis of neuromuscular disorder
6.6. Diagnosis of any other health disorder