Daniele L Marchisio, Rodney O Fox
Computational Models for Polydisperse Particulate and Multiphase Systems
Daniele L Marchisio, Rodney O Fox
Computational Models for Polydisperse Particulate and Multiphase Systems
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
All-inclusive introduction to polydisperse multiphase flows linking theory to practice through numerous real-world examples and MATLAB(R) scripts for key algorithms.
Andere Kunden interessierten sich auch für
- Robert KasperNumerical modeling and simulation of particulate fouling on structured heat transfer surfaces using multiphase Eulerian-Lagrangian LES53,88 €
- Eugene BarskyCritical Regimes of Two-Phase Flows with a Polydisperse Solid Phase110,99 €
- Eugene BarskyCritical Regimes of Two-Phase Flows with a Polydisperse Solid Phase110,99 €
- William T ShaNovel Porous Media Formulation for Multiphase Flow Conservation Equations117,99 €
- Mohamed Ashar SultanElectro-Mechanical Modelling of Charged Particulate Systems32,99 €
- G. Bahar BasimEngineered Particulate Systems for Chemical Mechanical Planarization38,99 €
- William T. ShaNovel Porous Media Formulation for Multiphase Flow Conservation Equations61,99 €
-
-
-
All-inclusive introduction to polydisperse multiphase flows linking theory to practice through numerous real-world examples and MATLAB(R) scripts for key algorithms.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 544
- Erscheinungstermin: 27. Mai 2013
- Englisch
- Abmessung: 254mm x 179mm x 30mm
- Gewicht: 1211g
- ISBN-13: 9780521858489
- ISBN-10: 0521858488
- Artikelnr.: 36772345
- Verlag: Cambridge University Press
- Seitenzahl: 544
- Erscheinungstermin: 27. Mai 2013
- Englisch
- Abmessung: 254mm x 179mm x 30mm
- Gewicht: 1211g
- ISBN-13: 9780521858489
- ISBN-10: 0521858488
- Artikelnr.: 36772345
Daniele L. Marchisio is an Associate Professor at the Politecnico di Torino, Italy, where he received his Ph.D. in 2001. He held visiting positions at the Laboratoire des Science du Génie Chimique, CNRS-ENSIC (Nancy, France), Iowa State University (USA), Eidgenössische Technische Hochschule Zürich (Switzerland), University College London (UK) and has been an invited professor at Aalborg University (Denmark) and University of Valladolid (Spain). He acts as referee for the key international journals of his field of research. He has authored 60 scientific papers, five book chapters and co-edited the volume Multiphase Reacting Flows (2007).
Introduction
Part I: 1. Disperse multiphase flows
2. Two example systems
3. Mesoscale modeling approach
4. Closure methods for moment transport equations
5. A road map
Part II. Mesoscale Description of Polydisperse Systems: 6. Number density functions (NDF)
7. NDF transport equation
8. Moment transport equations
9. Flow regimes for the PBE
10. The moment closure problem
Part III. Quadrature-based Moment Methods: 11. Univariate distributions
12. Multivariate distributions
13. Extended quadrature method of moments (EQMOM)
14. Direct quadrature method of moments (DQMOM)
Part IV. The Generalized Population Balance Equation: 15. Particle-based definition of the NDF
16. From the multi-particle-fluid joint PDF to the GPBE
17. Moment transport equations
18. Moment closures for the GPBE
Part V. Mesoscale Models for Physical and Chemical Processes: 19. An overview of mesoscale modeling
20. Phase-space advection: mass and heat transfer
21. Phase-space advection: momentum transfer
22. Real-space advection
23. Diffusion processes
24. Zero-order point processes
25. First-order point processes
26. Second-order point processes
Part VI. Hard-Sphere Collision Models: 27. Monodispere hard-sphere collisions
28. Polydispere hard-sphere collisions
29. Kinetic models
30. Moment transport equations
31. Application of quadrature to collision terms
Part VII. Solution Methods for Homogeneous Systems: 32. Overview of methods
33. Class and sectional methods
34. Method of moments
35. Quadrature-based moment methods
36. Monte Carlo methods
37. Example homogeneous PBEs
Part VIII. Moment Methods for Inhomogeneous Systems: 38. Overview of spatial modeling issues
39. Kinetic-based finite-volume methods
40. Inhomogeneous PBE
41. Inhomogeneous KE
42. Inhomogeneous GPBE
43. Concluding remarks
Appendices: A. Moment-inversion algorithms
B. Kinetic-based finite-volume methods
C. Moment methods with hyperbolic equations
D. Direct quadrature method of moments fully conservative.
Part I: 1. Disperse multiphase flows
2. Two example systems
3. Mesoscale modeling approach
4. Closure methods for moment transport equations
5. A road map
Part II. Mesoscale Description of Polydisperse Systems: 6. Number density functions (NDF)
7. NDF transport equation
8. Moment transport equations
9. Flow regimes for the PBE
10. The moment closure problem
Part III. Quadrature-based Moment Methods: 11. Univariate distributions
12. Multivariate distributions
13. Extended quadrature method of moments (EQMOM)
14. Direct quadrature method of moments (DQMOM)
Part IV. The Generalized Population Balance Equation: 15. Particle-based definition of the NDF
16. From the multi-particle-fluid joint PDF to the GPBE
17. Moment transport equations
18. Moment closures for the GPBE
Part V. Mesoscale Models for Physical and Chemical Processes: 19. An overview of mesoscale modeling
20. Phase-space advection: mass and heat transfer
21. Phase-space advection: momentum transfer
22. Real-space advection
23. Diffusion processes
24. Zero-order point processes
25. First-order point processes
26. Second-order point processes
Part VI. Hard-Sphere Collision Models: 27. Monodispere hard-sphere collisions
28. Polydispere hard-sphere collisions
29. Kinetic models
30. Moment transport equations
31. Application of quadrature to collision terms
Part VII. Solution Methods for Homogeneous Systems: 32. Overview of methods
33. Class and sectional methods
34. Method of moments
35. Quadrature-based moment methods
36. Monte Carlo methods
37. Example homogeneous PBEs
Part VIII. Moment Methods for Inhomogeneous Systems: 38. Overview of spatial modeling issues
39. Kinetic-based finite-volume methods
40. Inhomogeneous PBE
41. Inhomogeneous KE
42. Inhomogeneous GPBE
43. Concluding remarks
Appendices: A. Moment-inversion algorithms
B. Kinetic-based finite-volume methods
C. Moment methods with hyperbolic equations
D. Direct quadrature method of moments fully conservative.
Introduction
Part I: 1. Disperse multiphase flows
2. Two example systems
3. Mesoscale modeling approach
4. Closure methods for moment transport equations
5. A road map
Part II. Mesoscale Description of Polydisperse Systems: 6. Number density functions (NDF)
7. NDF transport equation
8. Moment transport equations
9. Flow regimes for the PBE
10. The moment closure problem
Part III. Quadrature-based Moment Methods: 11. Univariate distributions
12. Multivariate distributions
13. Extended quadrature method of moments (EQMOM)
14. Direct quadrature method of moments (DQMOM)
Part IV. The Generalized Population Balance Equation: 15. Particle-based definition of the NDF
16. From the multi-particle-fluid joint PDF to the GPBE
17. Moment transport equations
18. Moment closures for the GPBE
Part V. Mesoscale Models for Physical and Chemical Processes: 19. An overview of mesoscale modeling
20. Phase-space advection: mass and heat transfer
21. Phase-space advection: momentum transfer
22. Real-space advection
23. Diffusion processes
24. Zero-order point processes
25. First-order point processes
26. Second-order point processes
Part VI. Hard-Sphere Collision Models: 27. Monodispere hard-sphere collisions
28. Polydispere hard-sphere collisions
29. Kinetic models
30. Moment transport equations
31. Application of quadrature to collision terms
Part VII. Solution Methods for Homogeneous Systems: 32. Overview of methods
33. Class and sectional methods
34. Method of moments
35. Quadrature-based moment methods
36. Monte Carlo methods
37. Example homogeneous PBEs
Part VIII. Moment Methods for Inhomogeneous Systems: 38. Overview of spatial modeling issues
39. Kinetic-based finite-volume methods
40. Inhomogeneous PBE
41. Inhomogeneous KE
42. Inhomogeneous GPBE
43. Concluding remarks
Appendices: A. Moment-inversion algorithms
B. Kinetic-based finite-volume methods
C. Moment methods with hyperbolic equations
D. Direct quadrature method of moments fully conservative.
Part I: 1. Disperse multiphase flows
2. Two example systems
3. Mesoscale modeling approach
4. Closure methods for moment transport equations
5. A road map
Part II. Mesoscale Description of Polydisperse Systems: 6. Number density functions (NDF)
7. NDF transport equation
8. Moment transport equations
9. Flow regimes for the PBE
10. The moment closure problem
Part III. Quadrature-based Moment Methods: 11. Univariate distributions
12. Multivariate distributions
13. Extended quadrature method of moments (EQMOM)
14. Direct quadrature method of moments (DQMOM)
Part IV. The Generalized Population Balance Equation: 15. Particle-based definition of the NDF
16. From the multi-particle-fluid joint PDF to the GPBE
17. Moment transport equations
18. Moment closures for the GPBE
Part V. Mesoscale Models for Physical and Chemical Processes: 19. An overview of mesoscale modeling
20. Phase-space advection: mass and heat transfer
21. Phase-space advection: momentum transfer
22. Real-space advection
23. Diffusion processes
24. Zero-order point processes
25. First-order point processes
26. Second-order point processes
Part VI. Hard-Sphere Collision Models: 27. Monodispere hard-sphere collisions
28. Polydispere hard-sphere collisions
29. Kinetic models
30. Moment transport equations
31. Application of quadrature to collision terms
Part VII. Solution Methods for Homogeneous Systems: 32. Overview of methods
33. Class and sectional methods
34. Method of moments
35. Quadrature-based moment methods
36. Monte Carlo methods
37. Example homogeneous PBEs
Part VIII. Moment Methods for Inhomogeneous Systems: 38. Overview of spatial modeling issues
39. Kinetic-based finite-volume methods
40. Inhomogeneous PBE
41. Inhomogeneous KE
42. Inhomogeneous GPBE
43. Concluding remarks
Appendices: A. Moment-inversion algorithms
B. Kinetic-based finite-volume methods
C. Moment methods with hyperbolic equations
D. Direct quadrature method of moments fully conservative.