Jörg Bünemann, Jan Kierfeld
Computational Physics
Numerische Methoden und computergestützte Verfahren mit Python
Versandkostenfrei innerhalb Deutschlands
34,90 €
inkl. MwSt.
Versandkostenfrei*
Erscheint vorauss. 17. September 2025
Melden Sie sich
hier
hier
für den Produktalarm an, um über die Verfügbarkeit des Produkts informiert zu werden.
0 °P sammeln
Jörg Bünemann, Jan Kierfeld
Computational Physics
Numerische Methoden und computergestützte Verfahren mit Python
- Broschiertes Buch
Das Lehrbuch "Computational Physics" bietet Studierenden einen praxisorientierten Einstieg in die computergestützte Physik
Andere Kunden interessierten sich auch für
- Rubin H. LandauComputational Physics88,99 €
- K.B. Vijaya KumarMathematica for Physicists and Engineers59,99 €
- Attilio MaccariAsymptotic Perturbation Methods98,99 €
- Kai VeltenMathematical Modeling and Simulation82,99 €
- Alain DervieuxMesh Adaptation for Computational Fluid Dynamics, Volume 2176,99 €
- Alain DervieuxMesh Adaptation for Computational Fluid Dynamics, Volume 1179,99 €
- Computational Nuclear Physics 137,99 €
-
-
-
Das Lehrbuch "Computational Physics" bietet Studierenden einen praxisorientierten Einstieg in die computergestützte Physik
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Artikelnr. des Verlages: 1141428 000
- 1. Auflage
- Seitenzahl: 350
- Erscheinungstermin: 17. September 2025
- Deutsch
- Abmessung: 244mm x 170mm
- ISBN-13: 9783527414284
- ISBN-10: 3527414282
- Artikelnr.: 70162959
- Herstellerkennzeichnung
- Wiley-VCH GmbH
- Boschstraße 12
- 69469 Weinheim
- wiley.buha@zeitfracht.de
- 06201 6060
- Verlag: Wiley-VCH
- Artikelnr. des Verlages: 1141428 000
- 1. Auflage
- Seitenzahl: 350
- Erscheinungstermin: 17. September 2025
- Deutsch
- Abmessung: 244mm x 170mm
- ISBN-13: 9783527414284
- ISBN-10: 3527414282
- Artikelnr.: 70162959
- Herstellerkennzeichnung
- Wiley-VCH GmbH
- Boschstraße 12
- 69469 Weinheim
- wiley.buha@zeitfracht.de
- 06201 6060
Jörg Bünemann ist Privatdozent an der TU Dortmund und beschäftigt sich in seiner Forschung mit der analytischen und numerischen Untersuchung korrelierter Elektronensysteme. Jan Kierfeld ist Professor für Theoretische Physik an der TU Dortmund und widmet seine Forschung der Theorie weicher Materie und der biologischen Physik.
1 Fehler und Zahlen
1.1 Vorüberlegungen
1.2 Rundungsfehler
1.3 Stabilität iterativer Algorithmen
2 Lösung linearer Gleichungssysteme, Singulärwertzerlegung
2.1 Fall I: lineare Gleichungssysteme mit eindeutiger Lösung
2.2 Fälle I-III: die Singulärwertzerlegung
3 Eigenwerte und Eigenvektoren
3.1 Mathematische Wiederholung
3.2 Jacobi-Rotation
3.3 Diagonalisierung mit Hilfe des Householder-Algorithmus
3.4 Matrixdiagonalisierung in der Quantenmechanik
3.5 Die Potenzmethode und der Lanczos-Algorithmus
4 Differentiation und Integration
4.1 Differentiation
4.2 Einfache eindimensionale Integrale
4.3 Problematische eindimensionale Integrale
4.4 Hauptwertintegrale
4.5 Mehrdimensionale Integrale
4.6 Fourier-Transformationen
5 Numerische Minimierung
5.1 Funktionen von einer Variablen
5.2 Minimierung im Rn: Liniensuchmethoden
5.3 Newton- und Quasi-Newton-Verfahren
5.4 Minimierung unter Nebenbedingungen
6 Lösung nicht-linearer Gleichungssysteme
6.1 N = 1: Gleichungen einer Variablen
6.2 N > 1: Gleichungssysteme mit mehreren Variablen
6.3 Mathematischer Ausflug: Banachscher Fixpunktsatz
7 Systeme gewöhnlicher Differentialgleichungen
7.1 Problemstellung, Euler-Verfahren
7.2 Runge-Kutta-Verfahren
7.3 Mehr-Schritt-Verfahren
7.4 Steife Differentialgleichungen
8 Partielle Differentialgleichungen
8.1 Einleitung
8.2 Die Poisson-Gleichung
8.3 Anfangswertprobleme
9 Zufallszahlen, Random walks
9.1 Zufallszahlen
9.2 Anwendung: Random walks
10 Klassische Molekulardynamik
10.1 Einleitung
10.2 Messung von Observablen
10.3 Kanonische Molekulardynamik-Simulationen
11 Klassische Monte-Carlo Verfahren
11.1 Integrale, importance sampling
11.2 Das Ising-Modell
11.3 Monte-Carlo Simulationen kontinuierlicher Systeme
11.4 Lösung der Boltzmann-Gleichung
11.5 Optimierung: Das Problem des Handlungsreisenden
12 Gleichgewichts-Mean-Field-Näherungen
12.1 Das Bogoliubov-Variationsprinzip
12.2 Zum Heisenbergmodell mit Spin 1
13 Zeitentwicklung quantenmechanischer Systeme
13.1 Exakte Zeitentwicklung
13.2 Die Magnus-Entwicklung
13.3 Zeitabhängige Variationsnäherung
13.4 Zeitabhängige Hartree-Fock Näherung für Fermionen
14 Grundlagen des Machine Learning
1.1 Vorüberlegungen
1.2 Rundungsfehler
1.3 Stabilität iterativer Algorithmen
2 Lösung linearer Gleichungssysteme, Singulärwertzerlegung
2.1 Fall I: lineare Gleichungssysteme mit eindeutiger Lösung
2.2 Fälle I-III: die Singulärwertzerlegung
3 Eigenwerte und Eigenvektoren
3.1 Mathematische Wiederholung
3.2 Jacobi-Rotation
3.3 Diagonalisierung mit Hilfe des Householder-Algorithmus
3.4 Matrixdiagonalisierung in der Quantenmechanik
3.5 Die Potenzmethode und der Lanczos-Algorithmus
4 Differentiation und Integration
4.1 Differentiation
4.2 Einfache eindimensionale Integrale
4.3 Problematische eindimensionale Integrale
4.4 Hauptwertintegrale
4.5 Mehrdimensionale Integrale
4.6 Fourier-Transformationen
5 Numerische Minimierung
5.1 Funktionen von einer Variablen
5.2 Minimierung im Rn: Liniensuchmethoden
5.3 Newton- und Quasi-Newton-Verfahren
5.4 Minimierung unter Nebenbedingungen
6 Lösung nicht-linearer Gleichungssysteme
6.1 N = 1: Gleichungen einer Variablen
6.2 N > 1: Gleichungssysteme mit mehreren Variablen
6.3 Mathematischer Ausflug: Banachscher Fixpunktsatz
7 Systeme gewöhnlicher Differentialgleichungen
7.1 Problemstellung, Euler-Verfahren
7.2 Runge-Kutta-Verfahren
7.3 Mehr-Schritt-Verfahren
7.4 Steife Differentialgleichungen
8 Partielle Differentialgleichungen
8.1 Einleitung
8.2 Die Poisson-Gleichung
8.3 Anfangswertprobleme
9 Zufallszahlen, Random walks
9.1 Zufallszahlen
9.2 Anwendung: Random walks
10 Klassische Molekulardynamik
10.1 Einleitung
10.2 Messung von Observablen
10.3 Kanonische Molekulardynamik-Simulationen
11 Klassische Monte-Carlo Verfahren
11.1 Integrale, importance sampling
11.2 Das Ising-Modell
11.3 Monte-Carlo Simulationen kontinuierlicher Systeme
11.4 Lösung der Boltzmann-Gleichung
11.5 Optimierung: Das Problem des Handlungsreisenden
12 Gleichgewichts-Mean-Field-Näherungen
12.1 Das Bogoliubov-Variationsprinzip
12.2 Zum Heisenbergmodell mit Spin 1
13 Zeitentwicklung quantenmechanischer Systeme
13.1 Exakte Zeitentwicklung
13.2 Die Magnus-Entwicklung
13.3 Zeitabhängige Variationsnäherung
13.4 Zeitabhängige Hartree-Fock Näherung für Fermionen
14 Grundlagen des Machine Learning
1 Fehler und Zahlen
1.1 Vorüberlegungen
1.2 Rundungsfehler
1.3 Stabilität iterativer Algorithmen
2 Lösung linearer Gleichungssysteme, Singulärwertzerlegung
2.1 Fall I: lineare Gleichungssysteme mit eindeutiger Lösung
2.2 Fälle I-III: die Singulärwertzerlegung
3 Eigenwerte und Eigenvektoren
3.1 Mathematische Wiederholung
3.2 Jacobi-Rotation
3.3 Diagonalisierung mit Hilfe des Householder-Algorithmus
3.4 Matrixdiagonalisierung in der Quantenmechanik
3.5 Die Potenzmethode und der Lanczos-Algorithmus
4 Differentiation und Integration
4.1 Differentiation
4.2 Einfache eindimensionale Integrale
4.3 Problematische eindimensionale Integrale
4.4 Hauptwertintegrale
4.5 Mehrdimensionale Integrale
4.6 Fourier-Transformationen
5 Numerische Minimierung
5.1 Funktionen von einer Variablen
5.2 Minimierung im Rn: Liniensuchmethoden
5.3 Newton- und Quasi-Newton-Verfahren
5.4 Minimierung unter Nebenbedingungen
6 Lösung nicht-linearer Gleichungssysteme
6.1 N = 1: Gleichungen einer Variablen
6.2 N > 1: Gleichungssysteme mit mehreren Variablen
6.3 Mathematischer Ausflug: Banachscher Fixpunktsatz
7 Systeme gewöhnlicher Differentialgleichungen
7.1 Problemstellung, Euler-Verfahren
7.2 Runge-Kutta-Verfahren
7.3 Mehr-Schritt-Verfahren
7.4 Steife Differentialgleichungen
8 Partielle Differentialgleichungen
8.1 Einleitung
8.2 Die Poisson-Gleichung
8.3 Anfangswertprobleme
9 Zufallszahlen, Random walks
9.1 Zufallszahlen
9.2 Anwendung: Random walks
10 Klassische Molekulardynamik
10.1 Einleitung
10.2 Messung von Observablen
10.3 Kanonische Molekulardynamik-Simulationen
11 Klassische Monte-Carlo Verfahren
11.1 Integrale, importance sampling
11.2 Das Ising-Modell
11.3 Monte-Carlo Simulationen kontinuierlicher Systeme
11.4 Lösung der Boltzmann-Gleichung
11.5 Optimierung: Das Problem des Handlungsreisenden
12 Gleichgewichts-Mean-Field-Näherungen
12.1 Das Bogoliubov-Variationsprinzip
12.2 Zum Heisenbergmodell mit Spin 1
13 Zeitentwicklung quantenmechanischer Systeme
13.1 Exakte Zeitentwicklung
13.2 Die Magnus-Entwicklung
13.3 Zeitabhängige Variationsnäherung
13.4 Zeitabhängige Hartree-Fock Näherung für Fermionen
14 Grundlagen des Machine Learning
1.1 Vorüberlegungen
1.2 Rundungsfehler
1.3 Stabilität iterativer Algorithmen
2 Lösung linearer Gleichungssysteme, Singulärwertzerlegung
2.1 Fall I: lineare Gleichungssysteme mit eindeutiger Lösung
2.2 Fälle I-III: die Singulärwertzerlegung
3 Eigenwerte und Eigenvektoren
3.1 Mathematische Wiederholung
3.2 Jacobi-Rotation
3.3 Diagonalisierung mit Hilfe des Householder-Algorithmus
3.4 Matrixdiagonalisierung in der Quantenmechanik
3.5 Die Potenzmethode und der Lanczos-Algorithmus
4 Differentiation und Integration
4.1 Differentiation
4.2 Einfache eindimensionale Integrale
4.3 Problematische eindimensionale Integrale
4.4 Hauptwertintegrale
4.5 Mehrdimensionale Integrale
4.6 Fourier-Transformationen
5 Numerische Minimierung
5.1 Funktionen von einer Variablen
5.2 Minimierung im Rn: Liniensuchmethoden
5.3 Newton- und Quasi-Newton-Verfahren
5.4 Minimierung unter Nebenbedingungen
6 Lösung nicht-linearer Gleichungssysteme
6.1 N = 1: Gleichungen einer Variablen
6.2 N > 1: Gleichungssysteme mit mehreren Variablen
6.3 Mathematischer Ausflug: Banachscher Fixpunktsatz
7 Systeme gewöhnlicher Differentialgleichungen
7.1 Problemstellung, Euler-Verfahren
7.2 Runge-Kutta-Verfahren
7.3 Mehr-Schritt-Verfahren
7.4 Steife Differentialgleichungen
8 Partielle Differentialgleichungen
8.1 Einleitung
8.2 Die Poisson-Gleichung
8.3 Anfangswertprobleme
9 Zufallszahlen, Random walks
9.1 Zufallszahlen
9.2 Anwendung: Random walks
10 Klassische Molekulardynamik
10.1 Einleitung
10.2 Messung von Observablen
10.3 Kanonische Molekulardynamik-Simulationen
11 Klassische Monte-Carlo Verfahren
11.1 Integrale, importance sampling
11.2 Das Ising-Modell
11.3 Monte-Carlo Simulationen kontinuierlicher Systeme
11.4 Lösung der Boltzmann-Gleichung
11.5 Optimierung: Das Problem des Handlungsreisenden
12 Gleichgewichts-Mean-Field-Näherungen
12.1 Das Bogoliubov-Variationsprinzip
12.2 Zum Heisenbergmodell mit Spin 1
13 Zeitentwicklung quantenmechanischer Systeme
13.1 Exakte Zeitentwicklung
13.2 Die Magnus-Entwicklung
13.3 Zeitabhängige Variationsnäherung
13.4 Zeitabhängige Hartree-Fock Näherung für Fermionen
14 Grundlagen des Machine Learning