This is the only book to cover the most recent developments in applied quantum theory and their use in modeling materials properties. It describes new approaches to modeling disordered alloys and focuses on those approaches that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques. In doing so, it establishes a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates.
This is the only book to cover the most recent developments in applied quantum theory and their use in modeling materials properties. It describes new approaches to modeling disordered alloys and focuses on those approaches that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques. In doing so, it establishes a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates.
Dr Levente Vitos is a research fellow at the Research Institute for Solid State Physics and Optics (SZFKI), Budapest, a guest professor at KTH, Sweden, and a researcher at Uppsala University, Sweden. Dr Vitos is considered a world expert on the application of the LMTO quantum mechanical method and its application in materials systems, and the he is the creator of the new EMTO-CPA method. These methods represent the first useful applications of modern applied quantum mechanics that can be used practically in the industrial world of metallurgy and alloy design to model and create novel materials.
Inhaltsangabe
Basics of Electronic Structure Calculations Exact Muffin-Tin Orbitals Method Slope Matrix Full Charge Density Technique The EMTO-CPA Method Ground State Properties Ordered Solids Binary Alloys Iron-chromium-nickel Alloys