Dieses Buch ist ein wichtiges Referenzwerk für Toxikologen in vielen Bereichen und bietet eine umfassende Analyse molekular Modellansätze und Strategien der Risikobewertung von pharmazeutischen und Umweltchemikalien. - Zeigt, was mit rechnergestützter Toxikologie aktuell erreicht werden kann, und wirft einen Blick auf zukünftige Entwicklungen. - Gibt Antworten zu Themen wie Datenquellen, Datenpflege, Behandlung, Modellierung und Interpretation kritischer Endpunkte im Hinblick auf Gefahrenbewertungen im 21. Jahrhundert. - Bündelt herausragende Konzepte und das Wissen führender Autoren in…mehr
Dieses Buch ist ein wichtiges Referenzwerk für Toxikologen in vielen Bereichen und bietet eine umfassende Analyse molekular Modellansätze und Strategien der Risikobewertung von pharmazeutischen und Umweltchemikalien.
- Zeigt, was mit rechnergestützter Toxikologie aktuell erreicht werden kann, und wirft einen Blick auf zukünftige Entwicklungen. - Gibt Antworten zu Themen wie Datenquellen, Datenpflege, Behandlung, Modellierung und Interpretation kritischer Endpunkte im Hinblick auf Gefahrenbewertungen im 21. Jahrhundert. - Bündelt herausragende Konzepte und das Wissen führender Autoren in einem einzigartigen Referenzwerk. - Untersucht detailliert QSAR-Modelle, Eigenschaften physiochemischer Arzneistoffe, strukturbasiertes Drug Targeting, die Bewertung chemischer Mischungen und Umweltmodelle. - Behandelt zusätzlich die Sicherheitsbewertung von Verbraucherprodukten und den Bereich chemische Abwehr und bietet Kapitel zu Open-Source-Toxikologie und Big Data. Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
Produktdetails
Wiley Series on Technologies for the Pharmaceutical
Sean Ekins, MSc, PhD, DSc has over 20 years of pharmaceutical and toxicology experience. He is the founder or co-founder of two companies and Adjunct Professor at three universities. He has been awarded 16 NIH grants as Principal Investigator. He has authored or co authored over 285 peer-reviewed papers and book chapters and edited five books with Wiley. His research is focused on collaborations to facilitate rare and neglected disease drug discovery.
Inhaltsangabe
List of Contributors xvii
Preface xxi
Acknowledgments xxiii
Part I Computational Methods 1
1 AccessibleMachine Learning Approaches for Toxicology 3 Sean Ekins, Alex M. Clark, Alexander L. Perryman, Joel S. Freundlich, Alexandru Korotcov, and Valery Tkachenko
1.1 Introduction 3
1.2 Bayesian Models 5
1.2.1 CDD Models 7
1.3 Deep LearningModels 13
1.4 Comparison of Different Machine LearningMethods 16
1.4.1 Classic Machine LearningMethods 17
1.4.1.1 Bernoulli Naive Bayes 17
1.4.1.2 Linear Logistic Regression with Regularization 18
1.4.1.3 AdaBoost Decision Tree 18
1.4.1.4 Random Forest 18
1.4.1.5 Support Vector Machine 19
1.4.2 Deep Neural Networks 19
1.4.3 Comparing Models 20
1.5 FutureWork 21
Acknowledgments 21
References 21
2 Quantum Mechanics Approaches in Computational Toxicology 31 Jakub Kostal
2.1 Translating Computational Chemistry to Predictive Toxicology 31
2.2 Levels of Theory in Quantum Mechanical Calculations 33
2.3 Representing Molecular Orbitals 38
2.4 Hybrid Quantum and Molecular Mechanical Calculations 39
2.5 Representing System Dynamics 40
2.6 Developing QM Descriptors 42
2.6.1 Global Electronic Parameters 42
2.6.1.1 Electrostatic Potential, Dipole, and Polarizability 43
2.6.1.2 Global Electronic Parameters Derived from Frontier Molecular Orbitals (FMOs) 45
2.6.2 Local (Atom-Based) Electronic Parameters 47
2.6.2.1 Parameters Derived from Frontier Molecular Orbitals (FMOs) 48
2.6.2.2 Partial Atomic Charges 51
2.6.2.3 Hydrogen-Bonding Interactions 51
2.6.2.4 Bond Enthalpies 53
2.6.3 Modeling Chemical Reactions 53
2.6.4 QM/MM Calculations of Covalent Host-Guest Interactions 56
2.6.5 Medium Effects and Hydration Models 59
2.7 Rational Design of Safer Chemicals 61
References 64
Part II Applying Computers to Toxicology Assessment: Pharmaceutical, Industrial and Clinical 69
3 Computational Approaches for Predicting hERG Activity 71 Vinicius M. Alves, Rodolpho C. Braga, and Carolina Horta Andrade
3.1 Introduction 71
3.2 Computational Approaches 73
3.3 Ligand-Based Approaches 73
3.4 Structure-Based Approaches 77
3.5 Applications to Predict hERG Blockage 77
3.5.1 Pred-hERGWeb App 79
3.6 Other Computational Approaches Related to hERG Liability 82
3.7 Final Remarks 83
References 83
4 Computational Toxicology for Traditional Chinese Medicine 93 Ni Ai and Xiaohui Fan
4.1 Background, Current Status, and Challenges 93
4.2 Case Study: Large-Scale Prediction on Involvement of Organic Anion Transporter 1 in Traditional Chinese Medicine-Drug Interactions 99
4.2.1 Introduction to OAT1 and TCM 99
4.2.2 Construction of TCM Compound Database 101
4.2.3 OAT1 Inhibitor Pharmacophore Development 101
1 AccessibleMachine Learning Approaches for Toxicology 3 Sean Ekins, Alex M. Clark, Alexander L. Perryman, Joel S. Freundlich, Alexandru Korotcov, and Valery Tkachenko
1.1 Introduction 3
1.2 Bayesian Models 5
1.2.1 CDD Models 7
1.3 Deep LearningModels 13
1.4 Comparison of Different Machine LearningMethods 16
1.4.1 Classic Machine LearningMethods 17
1.4.1.1 Bernoulli Naive Bayes 17
1.4.1.2 Linear Logistic Regression with Regularization 18
1.4.1.3 AdaBoost Decision Tree 18
1.4.1.4 Random Forest 18
1.4.1.5 Support Vector Machine 19
1.4.2 Deep Neural Networks 19
1.4.3 Comparing Models 20
1.5 FutureWork 21
Acknowledgments 21
References 21
2 Quantum Mechanics Approaches in Computational Toxicology 31 Jakub Kostal
2.1 Translating Computational Chemistry to Predictive Toxicology 31
2.2 Levels of Theory in Quantum Mechanical Calculations 33
2.3 Representing Molecular Orbitals 38
2.4 Hybrid Quantum and Molecular Mechanical Calculations 39
2.5 Representing System Dynamics 40
2.6 Developing QM Descriptors 42
2.6.1 Global Electronic Parameters 42
2.6.1.1 Electrostatic Potential, Dipole, and Polarizability 43
2.6.1.2 Global Electronic Parameters Derived from Frontier Molecular Orbitals (FMOs) 45
2.6.2 Local (Atom-Based) Electronic Parameters 47
2.6.2.1 Parameters Derived from Frontier Molecular Orbitals (FMOs) 48
2.6.2.2 Partial Atomic Charges 51
2.6.2.3 Hydrogen-Bonding Interactions 51
2.6.2.4 Bond Enthalpies 53
2.6.3 Modeling Chemical Reactions 53
2.6.4 QM/MM Calculations of Covalent Host-Guest Interactions 56
2.6.5 Medium Effects and Hydration Models 59
2.7 Rational Design of Safer Chemicals 61
References 64
Part II Applying Computers to Toxicology Assessment: Pharmaceutical, Industrial and Clinical 69
3 Computational Approaches for Predicting hERG Activity 71 Vinicius M. Alves, Rodolpho C. Braga, and Carolina Horta Andrade
3.1 Introduction 71
3.2 Computational Approaches 73
3.3 Ligand-Based Approaches 73
3.4 Structure-Based Approaches 77
3.5 Applications to Predict hERG Blockage 77
3.5.1 Pred-hERGWeb App 79
3.6 Other Computational Approaches Related to hERG Liability 82
3.7 Final Remarks 83
References 83
4 Computational Toxicology for Traditional Chinese Medicine 93 Ni Ai and Xiaohui Fan
4.1 Background, Current Status, and Challenges 93
4.2 Case Study: Large-Scale Prediction on Involvement of Organic Anion Transporter 1 in Traditional Chinese Medicine-Drug Interactions 99
4.2.1 Introduction to OAT1 and TCM 99
4.2.2 Construction of TCM Compound Database 101
4.2.3 OAT1 Inhibitor Pharmacophore Development 101