Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and…mehr
Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods.
To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized.
The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools.
Scott Krig is a pioneer in computer imaging, computer vision, and graphics visualization. He founded Krig Research in 1988, providing the world's first image and vision systems based on high-performance engineering workstations, super-computers, and dedicated imaging hardware, serving customers worldwide in 25 countries. Scott has provided imaging and vision solutions around the globe, and has worked closely with many industries including aerospace, military, intelligence, law enforcement, government research, and academic organizations. More recently, Scott has worked for major corporations and startups serving commercial markets, solving problems in the areas of computer vision, imaging, graphics, visualization, robotics, process control, industrial automation, computer security, cryptography, and consumer applications of imaging and machine vision to PCs, laptops, mobile phones, and tablets. Most recently, he provided direction for Intel Corporation in the area of depth-sensing andcomputer vision methods for embedded systems and mobile platforms. Scott is the author of many patent applications worldwide in the areas of embedded systems, imaging, computer vision, DRM, and computer security, and studied at Stanford.
Inhaltsangabe
Image Capture and Representation.- Image Re-processing.- Global and Regional Features.- Local Feature Design Concepts.- Taxonomy of Feature Description Attributes.- Interest Point Detector and Feature Descriptor Survey.- Ground Truth Data, Content, Metrics, and Analysis.- Vision Pipeline and Optimizations.- Feature Learning Architecture Taxonomy and Neuroscience Background.- Feature Learning and Deep Learning Architecture Survey.
Chapter 1. Image Capture and Representation Chapter 2. Image Pre-Processing Chapter 3. Global and Regional Features Chapter 4. Local Feature Design Concepts, Classification, and Learning Chapter 5. Taxonomy Of Feature Description Attributes Chapter 6. Interest Point Detector and Feature Descriptor Survey Chapter 7. Ground Truth Data, Data, Metrics, and Analysis Chapter 8. Vision Pipelines and Optimizations Appendix A. Synthetic Feature Analysis Appendix B. Survey of Ground Truth Datasets Appendix C. Imaging and Computer Vision Resources Appendix D. Extended SDM Metrics
Image Capture and Representation.- Image Re-processing.- Global and Regional Features.- Local Feature Design Concepts.- Taxonomy of Feature Description Attributes.- Interest Point Detector and Feature Descriptor Survey.- Ground Truth Data, Content, Metrics, and Analysis.- Vision Pipeline and Optimizations.- Feature Learning Architecture Taxonomy and Neuroscience Background.- Feature Learning and Deep Learning Architecture Survey.
Chapter 1. Image Capture and Representation Chapter 2. Image Pre-Processing Chapter 3. Global and Regional Features Chapter 4. Local Feature Design Concepts, Classification, and Learning Chapter 5. Taxonomy Of Feature Description Attributes Chapter 6. Interest Point Detector and Feature Descriptor Survey Chapter 7. Ground Truth Data, Data, Metrics, and Analysis Chapter 8. Vision Pipelines and Optimizations Appendix A. Synthetic Feature Analysis Appendix B. Survey of Ground Truth Datasets Appendix C. Imaging and Computer Vision Resources Appendix D. Extended SDM Metrics
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826