A conjugate gradient approach to nonlinear elliptic boundary value problems in irregular regions.- Good approximation by splines with variable knots. II.- Conforming and nonconforming finite element methods for solving the plate problem.- Discretization and chained approximation.- Recent developments of the hopscotch idea.- The development of software for solving ordinary differential equations.- Boundary conditions for hyperbolic differential equations.- Nonlinear methods for stiff systems of ordinary differential equations.- Curved elements in the finite element method.- The design of difference schemes for studying physical instabilities.- Variable order variable step finite difference methods for nonlinear boundary value problems.- Cyclic finite-difference methods for ordinary differential equations.- The dimension of piecewise polynomial spaces, and one-sided approximation.- The comparative efficiency of certain finite element and finite difference methods for a hyperbolic problem.- Spline-galerkin methods for initial-value problems with constant coefficients.- On the accelerated SSOR method for solving elliptic boundary value problems.- Algebraic-geometry foundations for finite-element computation.- Spline-galerkin methods for initial-value problems with variable coefficients.- Constrained variational principles and penalty function methods in finite element analysis.- Finite element methods for parabolic equations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.