Malek Benslama, Wassila Kiamouche, Hadj Batatia
Connections Management Strategies in Satellite Cellular Networks
Malek Benslama, Wassila Kiamouche, Hadj Batatia
Connections Management Strategies in Satellite Cellular Networks
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book provides a novel method based on advantages of mobility model of Low Earth Orbit Mobile Satellite System LEO MSS which allows the evaluation of instant of subsequent handover of a MS even if its location is unknown. This method is then utilized to propose two prioritized handover schemes, Pseudo Last Useful Instant PLUI strategy and Dynamic Channel Reservation DCR-like scheme based respectively on LUI and DCR schemes, previously proposed in literature. The authors also approach a different aspect of handover problem: calls with short durations dropped due to a handover failure. We…mehr
Andere Kunden interessierten sich auch für
- End-To-End Quality of Service Over Cellular Networks169,99 €
- Robert A SteuernagelThe Cellular Connection96,99 €
- Ajay R MishraFundamentals of Cellular Network Planning and Optimisation118,99 €
- Allen W ScottRF Measurements for Cellular Phones and Wireless Data Systems187,99 €
- Geoff VarrallData Over Radio Data and Digital Processing Techniques in Mobile and Cellular Radio236,99 €
- Robert A SteuernagelCellular Marketing208,99 €
- Oswald JumiraEnergy Efficiency in Wireless Networks192,99 €
-
-
-
This book provides a novel method based on advantages of mobility model of Low Earth Orbit Mobile Satellite System LEO MSS which allows the evaluation of instant of subsequent handover of a MS even if its location is unknown. This method is then utilized to propose two prioritized handover schemes, Pseudo Last Useful Instant PLUI strategy and Dynamic Channel Reservation DCR-like scheme based respectively on LUI and DCR schemes, previously proposed in literature. The authors also approach a different aspect of handover problem: calls with short durations dropped due to a handover failure. We propose a decision system based on fuzzy logic Rescuing System that allows the rescue of calls with short durations facing a premature at the expense of those lasting for long durations.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 230
- Erscheinungstermin: 16. Februar 2015
- Englisch
- Abmessung: 240mm x 161mm x 17mm
- Gewicht: 516g
- ISBN-13: 9781848217751
- ISBN-10: 1848217757
- Artikelnr.: 41562684
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 230
- Erscheinungstermin: 16. Februar 2015
- Englisch
- Abmessung: 240mm x 161mm x 17mm
- Gewicht: 516g
- ISBN-13: 9781848217751
- ISBN-10: 1848217757
- Artikelnr.: 41562684
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Professor Malek Benslama, Constantine1 University Algeria. Wassila Kiamouche, Lecturer Constantine1 University, Algeria. Hajj Batatia, Lecturer ENSEEIHT IRIT Toulouse, France.
PREFACE ix
ABBREVIATIONS xi
INTRODUCTION xv
CHAPTER 1. THE FOUNDATIONS OF SATELLITE NETWORKS 1
1.1. Introduction 1
1.2. Satellite orbits 3
1.2.1. Characteristics of the ellipse 3
1.2.2. Kepler's laws 4
1.2.3. Orbital parameters for earth satellites 5
1.2.4. Orbital perturbations 7
1.2.5. Maintaining and surviving an orbit 7
1.3. Time, time variation and coverage 8
1.3.1. Geometric data 8
1.3.2. Approximation of coverage 11
1.3.3. Time interval between two successive intersatellite transfers 12
1.3.4. Time and time variation 12
1.4. Orbital paths 13
1.4.1. GEO-type systems 14
1.4.2. Elliptical systems 15
1.4.3. MEO-type systems 17
1.4.4. LEO-type systems 17
1.5. Characteristics of cellular satellite systems 19
1.6. The advantages of LEO systems 22
1.7. Handover in LEO satellite networks 23
1.7.1. Link-layer handover 24
1.7.2. Network-layer handover 25
CHAPTER 2. AN INTRODUCTION TO TELETRAFFIC 27
2.1. Introduction 27
2.2. The history of teletraffic theory and technique 28
2.2.1. Queuing theory 28
2.2.2. Teletraffic theory 29
2.3. Basic concepts 30
2.3.1. The birth-death process 31
2.3.2. Poisson process 32
2.4. Erlang-B and Erlang-C models 34
2.4.1. Blocking probability and the Erlang-B formula 34
2.4.2. Queuing probability and the Erlang-C formula 36
CHAPTER 3. CHANNEL ALLOCATION STRATEGIES AND THE MOBILITY MODEL 39
3.1. Introduction 39
3.2. Channel allocation techniques 40
3.2.1. Fixed channel allocation techniques 41
3.2.2. Dynamic channel allocation techniques 41
3.3. Spotbeam handover and priority strategies 43
3.3.1. Spotbeam handover 43
3.3.2. Priority strategies for handover requests 45
3.4. Mobility model 48
3.5. Analysis of the mobility model 53
CHAPTER 4. EVALUATION PARAMETERS METHOD 63
4.1. Introduction 63
4.2. The advantages of the LEO MSS mobility model 64
4.3. Evaluation parameters method 71
4.3.1. Position of the MU in the cell 71
4.3.2. The moment the next handover request initializes 72
4.3.3. Maximum queuing time 74
4.4. Pseudo-last useful instant queuing strategy 77
4.4.1. Putting handover requests in a queue 77
4.4.2. Handover request management 77
4.4.3. LUI queuing strategy 78
4.4.4. Pseudo-LUI queuing strategy 79
4.5. Guard channel strategy: dynamic channel reservation-like 81
4.5.1. Dynamic channel reservation technique 81
4.5.2. Dynamic channel reservation DCR-like technique 83
CHAPTER 5. ANALYTICAL STUDY 85
5.1. Introduction 85
5.2. An analysis of FCA-QH with different queuing strategies 85
5.3. Analytical study of FCR and FCR-like 91
5.3.1. An analysis of FCR 91
5.3.2. An analysis of FCR-like 94
CHAPTER 6. THE RESCUING SYSTEM 101
6.1. Introduction 101
6.2. Fuzzy logic 102
6.2.1. Definition of fuzzy subsets 102
6.2.2. Decisions in the fuzzy environment 102
6.3. The problem 103
6.4. Rescuing system 105
CHAPTER 7. RESULTS AND SIMULATION 109
7.1. Introduction 109
7.2. The (folded) simulated network 110
7.3. Simulation results 112
7.3.1. Verifying the simulation: a comparison with the analytical results
of the FCA-QH case with different queuing strategies 113
7.3.2. A comparison of FCA and DCA, DCA-QH & FCA-QH simulation using LUI
115
7.3.3. A comparison of NPS and QH, DCA-NPS & DCA-QH simulation 116
7.3.4. Comparison of QH strategies, DCA-QH FIFO, LUI, PLUI simulation 117
7.3.5. Verifying the simulation: a comparison with the analytical results
of the FCR and FCR-like case 119
7.3.6. A comparison of DCR and DCR-like 120
CHAPTER 8. PAB FOR IP TRAFFIC IN SATELLITE NETWORKS 127
8.1. Introduction 127
8.2. Proportional allocation of bandwidth 129
8.2.1. Implementation of PAB 130
8.3. Determination of the label fraction 135
8.3.1. Equal fractions 135
8.3.2. AP fractions 135
8.3.3. GP fractions 135
8.4. Simulation and results 136
8.4.1. Single congested link 137
8.4.2. Multiple congested link 146
8.5. Conclusion 149
GENERAL CONCLUSION 151
APPENDIX 1 157
APPENDIX 2 161
APPENDIX 3 163
APPENDIX 4 167
APPENDIX 5 169
BIBLIOGRAPHY 181
INDEX 201
ABBREVIATIONS xi
INTRODUCTION xv
CHAPTER 1. THE FOUNDATIONS OF SATELLITE NETWORKS 1
1.1. Introduction 1
1.2. Satellite orbits 3
1.2.1. Characteristics of the ellipse 3
1.2.2. Kepler's laws 4
1.2.3. Orbital parameters for earth satellites 5
1.2.4. Orbital perturbations 7
1.2.5. Maintaining and surviving an orbit 7
1.3. Time, time variation and coverage 8
1.3.1. Geometric data 8
1.3.2. Approximation of coverage 11
1.3.3. Time interval between two successive intersatellite transfers 12
1.3.4. Time and time variation 12
1.4. Orbital paths 13
1.4.1. GEO-type systems 14
1.4.2. Elliptical systems 15
1.4.3. MEO-type systems 17
1.4.4. LEO-type systems 17
1.5. Characteristics of cellular satellite systems 19
1.6. The advantages of LEO systems 22
1.7. Handover in LEO satellite networks 23
1.7.1. Link-layer handover 24
1.7.2. Network-layer handover 25
CHAPTER 2. AN INTRODUCTION TO TELETRAFFIC 27
2.1. Introduction 27
2.2. The history of teletraffic theory and technique 28
2.2.1. Queuing theory 28
2.2.2. Teletraffic theory 29
2.3. Basic concepts 30
2.3.1. The birth-death process 31
2.3.2. Poisson process 32
2.4. Erlang-B and Erlang-C models 34
2.4.1. Blocking probability and the Erlang-B formula 34
2.4.2. Queuing probability and the Erlang-C formula 36
CHAPTER 3. CHANNEL ALLOCATION STRATEGIES AND THE MOBILITY MODEL 39
3.1. Introduction 39
3.2. Channel allocation techniques 40
3.2.1. Fixed channel allocation techniques 41
3.2.2. Dynamic channel allocation techniques 41
3.3. Spotbeam handover and priority strategies 43
3.3.1. Spotbeam handover 43
3.3.2. Priority strategies for handover requests 45
3.4. Mobility model 48
3.5. Analysis of the mobility model 53
CHAPTER 4. EVALUATION PARAMETERS METHOD 63
4.1. Introduction 63
4.2. The advantages of the LEO MSS mobility model 64
4.3. Evaluation parameters method 71
4.3.1. Position of the MU in the cell 71
4.3.2. The moment the next handover request initializes 72
4.3.3. Maximum queuing time 74
4.4. Pseudo-last useful instant queuing strategy 77
4.4.1. Putting handover requests in a queue 77
4.4.2. Handover request management 77
4.4.3. LUI queuing strategy 78
4.4.4. Pseudo-LUI queuing strategy 79
4.5. Guard channel strategy: dynamic channel reservation-like 81
4.5.1. Dynamic channel reservation technique 81
4.5.2. Dynamic channel reservation DCR-like technique 83
CHAPTER 5. ANALYTICAL STUDY 85
5.1. Introduction 85
5.2. An analysis of FCA-QH with different queuing strategies 85
5.3. Analytical study of FCR and FCR-like 91
5.3.1. An analysis of FCR 91
5.3.2. An analysis of FCR-like 94
CHAPTER 6. THE RESCUING SYSTEM 101
6.1. Introduction 101
6.2. Fuzzy logic 102
6.2.1. Definition of fuzzy subsets 102
6.2.2. Decisions in the fuzzy environment 102
6.3. The problem 103
6.4. Rescuing system 105
CHAPTER 7. RESULTS AND SIMULATION 109
7.1. Introduction 109
7.2. The (folded) simulated network 110
7.3. Simulation results 112
7.3.1. Verifying the simulation: a comparison with the analytical results
of the FCA-QH case with different queuing strategies 113
7.3.2. A comparison of FCA and DCA, DCA-QH & FCA-QH simulation using LUI
115
7.3.3. A comparison of NPS and QH, DCA-NPS & DCA-QH simulation 116
7.3.4. Comparison of QH strategies, DCA-QH FIFO, LUI, PLUI simulation 117
7.3.5. Verifying the simulation: a comparison with the analytical results
of the FCR and FCR-like case 119
7.3.6. A comparison of DCR and DCR-like 120
CHAPTER 8. PAB FOR IP TRAFFIC IN SATELLITE NETWORKS 127
8.1. Introduction 127
8.2. Proportional allocation of bandwidth 129
8.2.1. Implementation of PAB 130
8.3. Determination of the label fraction 135
8.3.1. Equal fractions 135
8.3.2. AP fractions 135
8.3.3. GP fractions 135
8.4. Simulation and results 136
8.4.1. Single congested link 137
8.4.2. Multiple congested link 146
8.5. Conclusion 149
GENERAL CONCLUSION 151
APPENDIX 1 157
APPENDIX 2 161
APPENDIX 3 163
APPENDIX 4 167
APPENDIX 5 169
BIBLIOGRAPHY 181
INDEX 201
PREFACE ix
ABBREVIATIONS xi
INTRODUCTION xv
CHAPTER 1. THE FOUNDATIONS OF SATELLITE NETWORKS 1
1.1. Introduction 1
1.2. Satellite orbits 3
1.2.1. Characteristics of the ellipse 3
1.2.2. Kepler's laws 4
1.2.3. Orbital parameters for earth satellites 5
1.2.4. Orbital perturbations 7
1.2.5. Maintaining and surviving an orbit 7
1.3. Time, time variation and coverage 8
1.3.1. Geometric data 8
1.3.2. Approximation of coverage 11
1.3.3. Time interval between two successive intersatellite transfers 12
1.3.4. Time and time variation 12
1.4. Orbital paths 13
1.4.1. GEO-type systems 14
1.4.2. Elliptical systems 15
1.4.3. MEO-type systems 17
1.4.4. LEO-type systems 17
1.5. Characteristics of cellular satellite systems 19
1.6. The advantages of LEO systems 22
1.7. Handover in LEO satellite networks 23
1.7.1. Link-layer handover 24
1.7.2. Network-layer handover 25
CHAPTER 2. AN INTRODUCTION TO TELETRAFFIC 27
2.1. Introduction 27
2.2. The history of teletraffic theory and technique 28
2.2.1. Queuing theory 28
2.2.2. Teletraffic theory 29
2.3. Basic concepts 30
2.3.1. The birth-death process 31
2.3.2. Poisson process 32
2.4. Erlang-B and Erlang-C models 34
2.4.1. Blocking probability and the Erlang-B formula 34
2.4.2. Queuing probability and the Erlang-C formula 36
CHAPTER 3. CHANNEL ALLOCATION STRATEGIES AND THE MOBILITY MODEL 39
3.1. Introduction 39
3.2. Channel allocation techniques 40
3.2.1. Fixed channel allocation techniques 41
3.2.2. Dynamic channel allocation techniques 41
3.3. Spotbeam handover and priority strategies 43
3.3.1. Spotbeam handover 43
3.3.2. Priority strategies for handover requests 45
3.4. Mobility model 48
3.5. Analysis of the mobility model 53
CHAPTER 4. EVALUATION PARAMETERS METHOD 63
4.1. Introduction 63
4.2. The advantages of the LEO MSS mobility model 64
4.3. Evaluation parameters method 71
4.3.1. Position of the MU in the cell 71
4.3.2. The moment the next handover request initializes 72
4.3.3. Maximum queuing time 74
4.4. Pseudo-last useful instant queuing strategy 77
4.4.1. Putting handover requests in a queue 77
4.4.2. Handover request management 77
4.4.3. LUI queuing strategy 78
4.4.4. Pseudo-LUI queuing strategy 79
4.5. Guard channel strategy: dynamic channel reservation-like 81
4.5.1. Dynamic channel reservation technique 81
4.5.2. Dynamic channel reservation DCR-like technique 83
CHAPTER 5. ANALYTICAL STUDY 85
5.1. Introduction 85
5.2. An analysis of FCA-QH with different queuing strategies 85
5.3. Analytical study of FCR and FCR-like 91
5.3.1. An analysis of FCR 91
5.3.2. An analysis of FCR-like 94
CHAPTER 6. THE RESCUING SYSTEM 101
6.1. Introduction 101
6.2. Fuzzy logic 102
6.2.1. Definition of fuzzy subsets 102
6.2.2. Decisions in the fuzzy environment 102
6.3. The problem 103
6.4. Rescuing system 105
CHAPTER 7. RESULTS AND SIMULATION 109
7.1. Introduction 109
7.2. The (folded) simulated network 110
7.3. Simulation results 112
7.3.1. Verifying the simulation: a comparison with the analytical results
of the FCA-QH case with different queuing strategies 113
7.3.2. A comparison of FCA and DCA, DCA-QH & FCA-QH simulation using LUI
115
7.3.3. A comparison of NPS and QH, DCA-NPS & DCA-QH simulation 116
7.3.4. Comparison of QH strategies, DCA-QH FIFO, LUI, PLUI simulation 117
7.3.5. Verifying the simulation: a comparison with the analytical results
of the FCR and FCR-like case 119
7.3.6. A comparison of DCR and DCR-like 120
CHAPTER 8. PAB FOR IP TRAFFIC IN SATELLITE NETWORKS 127
8.1. Introduction 127
8.2. Proportional allocation of bandwidth 129
8.2.1. Implementation of PAB 130
8.3. Determination of the label fraction 135
8.3.1. Equal fractions 135
8.3.2. AP fractions 135
8.3.3. GP fractions 135
8.4. Simulation and results 136
8.4.1. Single congested link 137
8.4.2. Multiple congested link 146
8.5. Conclusion 149
GENERAL CONCLUSION 151
APPENDIX 1 157
APPENDIX 2 161
APPENDIX 3 163
APPENDIX 4 167
APPENDIX 5 169
BIBLIOGRAPHY 181
INDEX 201
ABBREVIATIONS xi
INTRODUCTION xv
CHAPTER 1. THE FOUNDATIONS OF SATELLITE NETWORKS 1
1.1. Introduction 1
1.2. Satellite orbits 3
1.2.1. Characteristics of the ellipse 3
1.2.2. Kepler's laws 4
1.2.3. Orbital parameters for earth satellites 5
1.2.4. Orbital perturbations 7
1.2.5. Maintaining and surviving an orbit 7
1.3. Time, time variation and coverage 8
1.3.1. Geometric data 8
1.3.2. Approximation of coverage 11
1.3.3. Time interval between two successive intersatellite transfers 12
1.3.4. Time and time variation 12
1.4. Orbital paths 13
1.4.1. GEO-type systems 14
1.4.2. Elliptical systems 15
1.4.3. MEO-type systems 17
1.4.4. LEO-type systems 17
1.5. Characteristics of cellular satellite systems 19
1.6. The advantages of LEO systems 22
1.7. Handover in LEO satellite networks 23
1.7.1. Link-layer handover 24
1.7.2. Network-layer handover 25
CHAPTER 2. AN INTRODUCTION TO TELETRAFFIC 27
2.1. Introduction 27
2.2. The history of teletraffic theory and technique 28
2.2.1. Queuing theory 28
2.2.2. Teletraffic theory 29
2.3. Basic concepts 30
2.3.1. The birth-death process 31
2.3.2. Poisson process 32
2.4. Erlang-B and Erlang-C models 34
2.4.1. Blocking probability and the Erlang-B formula 34
2.4.2. Queuing probability and the Erlang-C formula 36
CHAPTER 3. CHANNEL ALLOCATION STRATEGIES AND THE MOBILITY MODEL 39
3.1. Introduction 39
3.2. Channel allocation techniques 40
3.2.1. Fixed channel allocation techniques 41
3.2.2. Dynamic channel allocation techniques 41
3.3. Spotbeam handover and priority strategies 43
3.3.1. Spotbeam handover 43
3.3.2. Priority strategies for handover requests 45
3.4. Mobility model 48
3.5. Analysis of the mobility model 53
CHAPTER 4. EVALUATION PARAMETERS METHOD 63
4.1. Introduction 63
4.2. The advantages of the LEO MSS mobility model 64
4.3. Evaluation parameters method 71
4.3.1. Position of the MU in the cell 71
4.3.2. The moment the next handover request initializes 72
4.3.3. Maximum queuing time 74
4.4. Pseudo-last useful instant queuing strategy 77
4.4.1. Putting handover requests in a queue 77
4.4.2. Handover request management 77
4.4.3. LUI queuing strategy 78
4.4.4. Pseudo-LUI queuing strategy 79
4.5. Guard channel strategy: dynamic channel reservation-like 81
4.5.1. Dynamic channel reservation technique 81
4.5.2. Dynamic channel reservation DCR-like technique 83
CHAPTER 5. ANALYTICAL STUDY 85
5.1. Introduction 85
5.2. An analysis of FCA-QH with different queuing strategies 85
5.3. Analytical study of FCR and FCR-like 91
5.3.1. An analysis of FCR 91
5.3.2. An analysis of FCR-like 94
CHAPTER 6. THE RESCUING SYSTEM 101
6.1. Introduction 101
6.2. Fuzzy logic 102
6.2.1. Definition of fuzzy subsets 102
6.2.2. Decisions in the fuzzy environment 102
6.3. The problem 103
6.4. Rescuing system 105
CHAPTER 7. RESULTS AND SIMULATION 109
7.1. Introduction 109
7.2. The (folded) simulated network 110
7.3. Simulation results 112
7.3.1. Verifying the simulation: a comparison with the analytical results
of the FCA-QH case with different queuing strategies 113
7.3.2. A comparison of FCA and DCA, DCA-QH & FCA-QH simulation using LUI
115
7.3.3. A comparison of NPS and QH, DCA-NPS & DCA-QH simulation 116
7.3.4. Comparison of QH strategies, DCA-QH FIFO, LUI, PLUI simulation 117
7.3.5. Verifying the simulation: a comparison with the analytical results
of the FCR and FCR-like case 119
7.3.6. A comparison of DCR and DCR-like 120
CHAPTER 8. PAB FOR IP TRAFFIC IN SATELLITE NETWORKS 127
8.1. Introduction 127
8.2. Proportional allocation of bandwidth 129
8.2.1. Implementation of PAB 130
8.3. Determination of the label fraction 135
8.3.1. Equal fractions 135
8.3.2. AP fractions 135
8.3.3. GP fractions 135
8.4. Simulation and results 136
8.4.1. Single congested link 137
8.4.2. Multiple congested link 146
8.5. Conclusion 149
GENERAL CONCLUSION 151
APPENDIX 1 157
APPENDIX 2 161
APPENDIX 3 163
APPENDIX 4 167
APPENDIX 5 169
BIBLIOGRAPHY 181
INDEX 201