37,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

This book aims at defining and reassessing the role of population genetics in conservation biology and seeks to identify the progress made in the field during the last decade. It deals with conservation genetics from several currently researched points of view, namely, ecological and demographic measures of rarity or population persistence, loss of genetic variation, inbreeding, reduced migration rates and increased selective pressures under stress and the role of social behaviour and metapopulation structure. The use of molecular variation as the basis of naming or selecting target taxa and…mehr

Produktbeschreibung
This book aims at defining and reassessing the role of population genetics in conservation biology and seeks to identify the progress made in the field during the last decade. It deals with conservation genetics from several currently researched points of view, namely, ecological and demographic measures of rarity or population persistence, loss of genetic variation, inbreeding, reduced migration rates and increased selective pressures under stress and the role of social behaviour and metapopulation structure. The use of molecular variation as the basis of naming or selecting target taxa and some strategic decisions about genetic variance maximization in the conserved population or community units are analysed. Several case studies and scenarios illustrate the application of genetic information in conservation practices.
It follows naturally from the widely accepted Darwinian dictum that failures of populations or of species to adapt and to evolve under changing environments will result in their extinction. Population geneti cists have proclaimed a centerstage role in developing conservation biology theory and applications. However, we must critically reexamine what we know and how we can make rational contributions. We ask: Is genetic variation really important for the persistence of species? Has any species become extinct because it ran out of genetic variation or because of inbreeding depression? Are demographic and environmental stochas ticity by far more important for the fate of a population or species than genetic stochasticity (genetic drift and inbreeding)? Is there more to genetics than being a tool for assessing reproductive units and migration rates? Does conventional wisdom on inbreeding and "magic numbers" or rules of thumb on critical effective population sizes (MVP estimators) reflect any useful guidelines in conservation biology? What messages or guidelines from genetics can we reliably provide to those that work with conservation in practice? Is empirical work on numerous threatened habitats and taxa gathering population genetic information that we can use to test these guidelines? These and other questions were raised in the invitation to a symposium on conservation genetics held in May 1993 in pleasant surroundings at an old manor house in southern Jutland, Denmark.