179,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
90 °P sammeln
  • Gebundenes Buch

Contact in Structural Mechanics treats the problem of contact in the context of large deformations and the Coulomb friction law. The proposed formulation is based on a weak form that generalizes the classical principle of virtual powers in the sense that the weak form also encompasses all the contact laws. This formulation is thus a weighted residue method and has the advantage of being amenable to a standard finite element discretization. This book provides the reader with a detailed description of contact kinematics and the variation calculus of kinematic quantities, two essential subjects…mehr

Produktbeschreibung
Contact in Structural Mechanics treats the problem of contact in the context of large deformations and the Coulomb friction law. The proposed formulation is based on a weak form that generalizes the classical principle of virtual powers in the sense that the weak form also encompasses all the contact laws. This formulation is thus a weighted residue method and has the advantage of being amenable to a standard finite element discretization. This book provides the reader with a detailed description of contact kinematics and the variation calculus of kinematic quantities, two essential subjects for any contact study. The numerical resolution is carried out in statics and dynamics. In both cases, the derivation of the contact tangent matrix - an essential ingredient for iterative calculation - is explained in detail. Several numerical examples are presented to illustrate the efficiency of the method.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Anh Le van is Professor of Structural Mechanics in the Faculty of Science and Technology, University of Nantes, France. His research at the Research Institute in Civil and Mechanical Engineering (GeM) focuses on membrane structures and, more specifically, on contact and bifurcation problems in these structures.