53,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications. The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples.
After a review of some background material, the reader is introduced to semigroup theory, including the Hille-Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller's seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is…mehr

Produktbeschreibung
This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications. The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples.

After a review of some background material, the reader is introduced to semigroup theory, including the Hille-Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller's seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes, and processes with independent increments, or Lévy processes. The greater part of the book is devoted to Itô's fascinating theory of stochastic differential equations, and to the study of asymptotic properties of diffusions in all dimensions, such as explosion, transience, recurrence, existence of steady states, and the speed of convergence to equilibrium. A broadly applicable functional central limit theorem for ergodic Markov processes is presented with important examples. Intimate connections between diffusions and linear second order elliptic and parabolic partial differential equations are laid out in two chapters, and are used for computational purposes. Among Special Topics chapters, two study anomalous diffusions: one on skew Brownian motion, and the other on an intriguing multi-phase homogenization of solute transport in porous media.


Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Rabi Bhattacharya is Professor of Mathematics at The University of Arizona. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the U.S. Senior Scientist Humboldt Award and of a Guggenheim Fellowship. He has made significant contributions to the theory and application of Markov processes, and more recently, nonparametric statistical inference on manifolds. He has served on editorial boards of many international journals and has published several research monographs and graduate texts on probability and statistics. Edward C. Waymire is Emeritus Professor of Mathematics at Oregon State University. He received a PhD in mathematics from the University of Arizona in the theory of interacting particle systems. His primary research concerns applications of probability and stochastic processes to problems of contemporary applied mathematics pertaining to various types of flows, dispersion, and random disorder. He is a formerchief editor of the Annals of Applied Probability, and past president of the Bernoulli Society for Mathematical Statistics and Probability.