26,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Está a ter lugar uma aprendizagem profunda, especialmente com o rápido crescimento e disponibilidade de grandes bases de dados e as recentes melhorias nas Unidades de Processamento Gráfico (GPUs). O principal objectivo desta investigação é aplicar algoritmos de aprendizagem profunda, tais como Redes Neurais Convolucionais (CNNs) e arquitecturas profundas, em particular o modelo VGG-16 deep para categorização e localização de veículos em cenários rodoviários. Nesta tese, mostraremos que através da parametrização optimizada e modificação algorítmica simples, podemos melhorar, mesmo…mehr

Produktbeschreibung
Está a ter lugar uma aprendizagem profunda, especialmente com o rápido crescimento e disponibilidade de grandes bases de dados e as recentes melhorias nas Unidades de Processamento Gráfico (GPUs). O principal objectivo desta investigação é aplicar algoritmos de aprendizagem profunda, tais como Redes Neurais Convolucionais (CNNs) e arquitecturas profundas, em particular o modelo VGG-16 deep para categorização e localização de veículos em cenários rodoviários. Nesta tese, mostraremos que através da parametrização optimizada e modificação algorítmica simples, podemos melhorar, mesmo relativamente, a robustez de uma determinada rede Faster R-CNN na detecção de veículos e obter melhores resultados com base em várias bases de dados (PASCAL VOC 2007, PASCAL VOC 2012, MIT Traffic, CUHK Square e Logiroad).
Autorenporträt
Khaled Bayoudh es estudiante de doctorado en la Escuela Nacional de Ingeniería y está interesado en diversos aspectos como los vehículos autónomos, la visión por ordenador y el aprendizaje profundo. Antes de iniciar sus estudios de doctorado, Khaled obtuvo un máster en Sistemas de Transporte Inteligente en la Escuela Nacional de Ingeniería de Túnez.