En général pour analyser un phénomène naturel ou un problème d'ingénierie en par- ticulier, nous sommes souvent amené à développer un modèle mathématique pouvant décrire d'une manière aussi fiable que possible le problème en question. C'est le cas du phénomène d'élasticité linéaire qui est essentiellement abordé dans le présent document. L'élasticité linéaire (Gurtin M.E et al., R.D.Mindlin et al. 1973, [92, 93, 94]) est l'étude mathématique de la façon dont les objets solides se déforment et se sou- mettent à des contraintes internes dûes aux conditions de chargement prescrites. C'est une simplification de la théorie non-linéaire de l'élasticité. Les hypothèses fon- damentales de l'élasticité linéaire sont les déformations infinitésimales (D.C.Spencer et al., J.Gasqui et al. 1983, [96, 97, 98]) ou "petites" déformations et la relations linéaires entre les composantes de la contrainte et de la déformation. Elles sont don- nées par la loi de Hooke (Y.Brechet et al. 2013, [95]). Grâce à cette dernière et dans des conditions physiques bien définies, l'équation de Navier-Lamé ( Michael.J.Cloud et al. 2009, [99, 100]) est extraite,
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.