125,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
63 °P sammeln
  • Broschiertes Buch

Hyponormal pairs of commuting operators.- Conditional expectations and invariant subspaces.- Hamiltonian systems with eigenvalue depending boundary conditions.- Analytic functions of elements of the Calkin algebra, and their limits.- Chordal inheritance principles and positive definite completions of partial matrices over function rings.- Duality and uniform approximation by solutions of elliptic equations.- 2-Chordal graphs.- Hamiltonian representation of stationary processes.- End point results for estimates of singular values of singular integral operators.- On lifting to the commutant.-…mehr

Produktbeschreibung
Hyponormal pairs of commuting operators.- Conditional expectations and invariant subspaces.- Hamiltonian systems with eigenvalue depending boundary conditions.- Analytic functions of elements of the Calkin algebra, and their limits.- Chordal inheritance principles and positive definite completions of partial matrices over function rings.- Duality and uniform approximation by solutions of elliptic equations.- 2-Chordal graphs.- Hamiltonian representation of stationary processes.- End point results for estimates of singular values of singular integral operators.- On lifting to the commutant.- The smooth mappings which preserve the Hardy space H2 (Bn).- Shift invariant subspaces, passivity reproducing kernels and H?-Optimization.- Toeplitz operators on multiply connected domains and Theta functions.- Integral representations of bounded Hankel forms defined in scattering systems with a multiparametric evolution group.- Random Toeplitz and Hankel operators.- Block Toeplitz operators with rational symbols.- Finite representations of block Hankel operators and balanced realizations.- Nearly invariant subspaces of the backward shift.- The heat expansion for systems of integral equations.- List of participants.- List of speakers.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.