44,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
22 °P sammeln
  • Broschiertes Buch

Although cardiac output is measured as the flow of blood from the left ventricle into the aorta, the system that controls cardiac output includes many other components besides the heart itself. The heart's rate of output cannot exceed the rate of venous return to it, and therefore, the factors governing venous return are primarily responsible for control of output from the heart. Venous return is affected by its pressure gradient and resistance to flow throughout the vascular system. The pressure gradient for venous return is a function of several factors including the blood volume flowing…mehr

Produktbeschreibung
Although cardiac output is measured as the flow of blood from the left ventricle into the aorta, the system that controls cardiac output includes many other components besides the heart itself. The heart's rate of output cannot exceed the rate of venous return to it, and therefore, the factors governing venous return are primarily responsible for control of output from the heart. Venous return is affected by its pressure gradient and resistance to flow throughout the vascular system. The pressure gradient for venous return is a function of several factors including the blood volume flowing through the system, the unstressed vascular volume of the circulatory system, its capacitance, mean systemic pressure, and right atrial pressure. Resistance to venous return is the sum of total vascular resistance from the aortic valve to the right atrium. The sympathetic nervous system and vasoactive circulating hormones affect short-term resistance, whereas local tissue blood flow autoregulatory mechanisms are the dominant determinants of long-term resistance to venous return. The strength of contraction of the heart responds to changes in atrial pressure driven by changes in venous return, with small changes in atrial pressure eliciting large changes in strength of contraction, as described by the Frank-Starling mechanism. In addition, the autonomic nervous system input to the heart alters myocardial pumping ability in response to cardiovascular challenges. The function of the cardiovascular system is strongly affected by the operation of the renal sodium excretion-body fluid volume-arterial pressure negative feedback system that maintains arterial blood pressure at a controlled value over long periods. The intent of this volume is to integrate the basic knowledge of these cardiovascular system components into an understanding of cardiac output regulation. Table of Contents: Introduction / Venous Return / Cardiac Function / Integrated Analysis of Cardiac Output Control / Analysis of Cardiac Output Regulation by Computer Simulation / Analysis of Cardiac Output Control in Response to Challenges / Conclusion / References / Author Biography
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
David Young resides in Danville, Kentucky, with wife Holly and their triplets - Mason, Connor, and Emma. David is a long-time school and district leader, now serving as CEO of the Central Kentucky Educational Cooperative. Schools and districts have experienced great improvements in standards mastery and student achievement under David and his teams' guidance. David spends his professional time working with schools to implement proven systems that lead to this level of student success.