This book presents design techniques for control system with a specific focus on robustness with respect to matched bounded disturbances, in both continuous-time and discrete-time frameworks. Includes experimental results obtained in real-world applications.
Saturation nonlinearities are ubiquitous in engineering systems: every physical actuator or sensor is subject to saturation owing to its maximum and minimum limits. Input saturation is an operating condition that is well known to the control community for its "side effects", which cause conventional controllers to lose their closed-loop performance as well as control authority in stabilization. Therefore, the practical application of control theory cannot avoid taking into account saturation nonlinearities in actuators, explicitly dealing with constraints in control design.
Saturation nonlinearities are ubiquitous in engineering systems: every physical actuator or sensor is subject to saturation owing to its maximum and minimum limits. Input saturation is an operating condition that is well known to the control community for its "side effects", which cause conventional controllers to lose their closed-loop performance as well as control authority in stabilization. Therefore, the practical application of control theory cannot avoid taking into account saturation nonlinearities in actuators, explicitly dealing with constraints in control design.