37,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Gebundenes Buch

This thesis focuses on the controlled synthesis of Pt-Ni bimetallic nanoparticles and the study of their catalytic properties. It discusses in detail the nucleation mechanism and the growth process of bimetallic systems, which is vital for a deeper understanding of the design of bimetallic catalysts. The author presents four pioneering studies: (1) syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and the study of their structure-activity relationship in model hydrogenation reactions; (2) a strategy for designing a concave Pt-Ni alloy using controllable…mehr

Produktbeschreibung
This thesis focuses on the controlled synthesis of Pt-Ni bimetallic nanoparticles and the study of their catalytic properties. It discusses in detail the nucleation mechanism and the growth process of bimetallic systems, which is vital for a deeper understanding of the design of bimetallic catalysts. The author presents four pioneering studies: (1) syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and the study of their structure-activity relationship in model hydrogenation reactions; (2) a strategy for designing a concave Pt-Ni alloy using controllable chemical etching; (3) defect-dominated shape recovery of nanocrystals, which is a new synthesis strategy for trimetallic catalysts; (4) a sophisticated construction of Au islands on Pt-Ni, which is an ideal trimetallic nanoframe catalyst. This thesis inspires researchers working in materials, catalysis as well as other interdisciplinary areas.
Autorenporträt