The main purpose is to investigate the convergence and summability both of one-dimensional and multi-dimensional Fourier transforms as well as the theory of Hardy spaces. A general summability method, the so called theta-summation, is studied which contains all well known summability methods, such as the Fejer, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. After the classical books of Bary (1964) and Zygmund (1968), this is the first book which considers strong summability treated by current methods. A further novelty of this book is that the Lebesgue points are studied…mehr
The main purpose is to investigate the convergence and summability both of one-dimensional and multi-dimensional Fourier transforms as well as the theory of Hardy spaces. A general summability method, the so called theta-summation, is studied which contains all well known summability methods, such as the Fejer, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. After the classical books of Bary (1964) and Zygmund (1968), this is the first book which considers strong summability treated by current methods. A further novelty of this book is that the Lebesgue points are studied also in the theory of multi-dimensional summability. Besides the classical results, recent results of the last 20-30 years are studied. These results can be found in different research papers the summary of which in a unified context provides the readers a valuable support in their work.The book will be useful for researchers as well as for graduate or postgraduate students. The first two chapters can be used by graduate students and the other ones by PhD students and researchers."Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
List of Figures.- Preface.- I One-dimensional Hardy spaces and Fourier transforms.- 1 One-dimensional Hardy spaces.- 1.1 The Lp spaces.- 1.2 Hardy-Littlewood maximal function.- 1.3 Schwartz functions.- 1.4 Tempered distributions and Hardy spaces.- 1.5 Inequalities with respect to Hardy spaces.- 1.6 Atomic decomposition.- 1.7 Interpolation between Hardy spaces.- 1.8 Bounded operators on Hardy spaces.- 2 One-dimensional Fourier transforms.- 2.1 Fourier transforms.- 2.2 Tempered distributions.- 2.3 Partial sums of Fourier series.- 2.4 Convergence of the inverse Fourier transform.- 2.5 Summability of one-dimensional Fourier transforms.- 2.6 Norm convergence of the summability means.- 2.7 Almost everywhere convergence of the summability means.- 2.8 Boundedness of the maximal operator.- 2.9 Convergence at Lebesgue points.- 2.10 Strong summability.- 2.11 Some summability methods.- II Multi-dimensional Hardy spaces and Fourier transforms.- 3 Multi-dimensional Hardy spaces.- 3.1 Multi-dimensional maximal functions.- 3.1.1 Hardy-Littlewood maximal functions.- 3.1.2 Strong maximal functions.- 3.2 Multi-dimensional tempered distributions and Hardy spaces.- 3.3 Inequalities with respect to multi-dimensional Hardy spaces.- 3.4 Atomic decompositions.- 3.4.1 Atomic decomposition of H2p (Rd).- 3.4.2 Atomic decomposition of Hp(Rd).- 3.5 Interpolation between multi-dimensional Hardy spaces.- 3.5.1 Interpolation between the H2p (Rd) spaces.- 3.5.2 Interpolation between the Hp(Rd) spaces.- 3.6 Bounded operators on multi-dimensional Hardy spaces.- 3.6.1 Bounded operators on H2p (Rd).- 3.6.2 Bounded operators on Hp(Rd).- 4 Multi-dimensional Fourier transforms.- 4.1 Fourier transforms.- 4.2 Multi-dimensional partial sums.- 4.3 Convergence of the inverse Fourier transform.- 4.4 Multi-dimensional Dirichlet kernels.- 4.4.1 Triangular Dirichlet kernels.- 4.4.2 Circular Dirichlet kernels.- 5 `q-summability of multi-dimensional Fourier transforms.- 5.1 The `-summability means.- 5.2 Norm convergence of the `q-summability means.- 5.2.1 Proof ofTheorem 5.2.1 for q = 1 and q = 1.- 5.2.1.1 Proof for q = 1 in the two-dimensional case.- 5.2.1.2 Proof for q = 1 in higher dimensions (d 3).- 5.2.1.3 Proof for q = 1 in the two-dimensional case.- 5.2.1.4 Proof for q = 1 in higher dimensions (d 3).- 5.2.2 Some summability methods.- 5.2.3 Further results for the Bochner-Riesz means.- 5.3 Almost everywhere convergence of the `q-summability means.- 5.3.1 Proof of Theorem 5.3.2.- 5.3.1.1 Proof for q = 1 in the two-dimensional case.- 5.3.1.2 Proof for q = 1 in higher dimensions (d 3).- 5.3.1.3 Proof for q = 1 in the two-dimensional case.- 5.3.1.4 Proof for q = 1 in higher dimensions (d 3).- 5.3.2 Proof of Theorem 5.3.3.- 5.3.3 Some summability methods.- 5.3.4 Further results for the Bochner-Riesz means.- 5.4 Convergence at Lebesgue points.- 5.4.1 Circular summability (q = 2).- 5.4.2 Cubic and triangular summability (q = 1 and q = 1).- 5.4.2.1 Proof of the results for q = 1 and d = 2.- 5.4.2.2 Proof of the results for q = 1 and d = 2.- 5.4.2.3 Proof of the results for q = 1 and d 3.- 5.4.2.4 Proof of the results for q = 1 and d 3.- 5.5 Proofs of the one-dimensional strong summability results.- 6 Rectangular summability of multi-dimensional Fourier transforms.- 6.1 Norm convergence of rectangular summability means.- 6.2 Almost everywhere restricted summability.- 6.3 Restricted convergence at Lebesgue points.- 6.4 Almost everywhere unrestricted summability.- 6.5 Unrestricted convergence at Lebesgue points.- Bibliography.- Index.- Notations.
List of Figures.- Preface.- I One-dimensional Hardy spaces and Fourier transforms.- 1 One-dimensional Hardy spaces.- 1.1 The Lp spaces.- 1.2 Hardy-Littlewood maximal function.- 1.3 Schwartz functions.- 1.4 Tempered distributions and Hardy spaces.- 1.5 Inequalities with respect to Hardy spaces.- 1.6 Atomic decomposition.- 1.7 Interpolation between Hardy spaces.- 1.8 Bounded operators on Hardy spaces.- 2 One-dimensional Fourier transforms.- 2.1 Fourier transforms.- 2.2 Tempered distributions.- 2.3 Partial sums of Fourier series.- 2.4 Convergence of the inverse Fourier transform.- 2.5 Summability of one-dimensional Fourier transforms.- 2.6 Norm convergence of the summability means.- 2.7 Almost everywhere convergence of the summability means.- 2.8 Boundedness of the maximal operator.- 2.9 Convergence at Lebesgue points.- 2.10 Strong summability.- 2.11 Some summability methods.- II Multi-dimensional Hardy spaces and Fourier transforms.- 3 Multi-dimensional Hardy spaces.- 3.1 Multi-dimensional maximal functions.- 3.1.1 Hardy-Littlewood maximal functions.- 3.1.2 Strong maximal functions.- 3.2 Multi-dimensional tempered distributions and Hardy spaces.- 3.3 Inequalities with respect to multi-dimensional Hardy spaces.- 3.4 Atomic decompositions.- 3.4.1 Atomic decomposition of H2p (Rd).- 3.4.2 Atomic decomposition of Hp(Rd).- 3.5 Interpolation between multi-dimensional Hardy spaces.- 3.5.1 Interpolation between the H2p (Rd) spaces.- 3.5.2 Interpolation between the Hp(Rd) spaces.- 3.6 Bounded operators on multi-dimensional Hardy spaces.- 3.6.1 Bounded operators on H2p (Rd).- 3.6.2 Bounded operators on Hp(Rd).- 4 Multi-dimensional Fourier transforms.- 4.1 Fourier transforms.- 4.2 Multi-dimensional partial sums.- 4.3 Convergence of the inverse Fourier transform.- 4.4 Multi-dimensional Dirichlet kernels.- 4.4.1 Triangular Dirichlet kernels.- 4.4.2 Circular Dirichlet kernels.- 5 `q-summability of multi-dimensional Fourier transforms.- 5.1 The `-summability means.- 5.2 Norm convergence of the `q-summability means.- 5.2.1 Proof ofTheorem 5.2.1 for q = 1 and q = 1.- 5.2.1.1 Proof for q = 1 in the two-dimensional case.- 5.2.1.2 Proof for q = 1 in higher dimensions (d 3).- 5.2.1.3 Proof for q = 1 in the two-dimensional case.- 5.2.1.4 Proof for q = 1 in higher dimensions (d 3).- 5.2.2 Some summability methods.- 5.2.3 Further results for the Bochner-Riesz means.- 5.3 Almost everywhere convergence of the `q-summability means.- 5.3.1 Proof of Theorem 5.3.2.- 5.3.1.1 Proof for q = 1 in the two-dimensional case.- 5.3.1.2 Proof for q = 1 in higher dimensions (d 3).- 5.3.1.3 Proof for q = 1 in the two-dimensional case.- 5.3.1.4 Proof for q = 1 in higher dimensions (d 3).- 5.3.2 Proof of Theorem 5.3.3.- 5.3.3 Some summability methods.- 5.3.4 Further results for the Bochner-Riesz means.- 5.4 Convergence at Lebesgue points.- 5.4.1 Circular summability (q = 2).- 5.4.2 Cubic and triangular summability (q = 1 and q = 1).- 5.4.2.1 Proof of the results for q = 1 and d = 2.- 5.4.2.2 Proof of the results for q = 1 and d = 2.- 5.4.2.3 Proof of the results for q = 1 and d 3.- 5.4.2.4 Proof of the results for q = 1 and d 3.- 5.5 Proofs of the one-dimensional strong summability results.- 6 Rectangular summability of multi-dimensional Fourier transforms.- 6.1 Norm convergence of rectangular summability means.- 6.2 Almost everywhere restricted summability.- 6.3 Restricted convergence at Lebesgue points.- 6.4 Almost everywhere unrestricted summability.- 6.5 Unrestricted convergence at Lebesgue points.- Bibliography.- Index.- Notations.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497