Adam Bobrowski (Poland Politechnika Lubelska)
Convergence of One-parameter Operator Semigroups
Adam Bobrowski (Poland Politechnika Lubelska)
Convergence of One-parameter Operator Semigroups
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Presents the classical theory of convergence of semigroups and looks at how it applies to real-world phenomena.
Andere Kunden interessierten sich auch für
- Roger A. Horn (The Johns Hopkins University)Topics in Matrix Analysis93,99 €
- D. S. JonesThe Theory of Generalised Functions87,99 €
- Walter Van Assche (Belgium Katholieke Universiteit Leuven)Orthogonal Polynomials and Painlevé Equations45,99 €
- Aurelian Gheondea (Ankara Bilkent University)An Indefinite Excursion in Operator Theory123,99 €
- John StillwellReverse Mathematics23,99 €
- Elias M. SteinReal Analysis100,99 €
- James R. KirkwoodA Bridge to Higher Mathematics37,99 €
-
-
-
Presents the classical theory of convergence of semigroups and looks at how it applies to real-world phenomena.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- New Mathematical Monographs
- Verlag: Cambridge University Press
- Seitenzahl: 454
- Erscheinungstermin: 13. Juni 2016
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 792g
- ISBN-13: 9781107137431
- ISBN-10: 1107137438
- Artikelnr.: 43708114
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- New Mathematical Monographs
- Verlag: Cambridge University Press
- Seitenzahl: 454
- Erscheinungstermin: 13. Juni 2016
- Englisch
- Abmessung: 235mm x 157mm x 29mm
- Gewicht: 792g
- ISBN-13: 9781107137431
- ISBN-10: 1107137438
- Artikelnr.: 43708114
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Adam Bobrowski is a professor and Chairman of the Department of Mathematics at Lublin University of Technology, Poland. He has authored over 50 scientific papers and two books, Functional Analysis for Probability and Stochastic Processes and An Operator Semigroup in Mathematical Genetics.
Preface
1. Semigroups of operators
Part I. Regular Convergence: 2. The first convergence theorem
3. Example - boundary conditions
4. Example - a membrane
5. Example - sesquilinear forms
6. Uniform approximation of semigroups
7. Convergence of resolvents
8. (Regular) convergence of semigroups
9. Example - a queue
10. Example - elastic boundary
11. Example - membrane again
12. Example - telegraph
13. Example - Markov chains
14. A bird's-eye view
15. Hasegawa's condition
16. Blackwell's example
17. Wright's diffusion
18. Discrete-time approximation
19. Discrete-time approximation - examples
20. Back to Wright's diffusion
21. Kingman's n-coalescent
22. The Feynman-Kac formula
23. The two-dimensional Dirac equation
24. Approximating spaces
25. Boundedness, stablization
Part II. Irregular Convergence: 26. First examples
27. Example - genetic drift
28. The nature of irregular convergence
29. Convergence under perturbations
30. Stein's model
31. Uniformly holomorphic semigroups
32. Asymptotic behavior of semigroups
33. Fast neurotransmitters
34. Fast neurotransmitters II
35. Diffusions on graphs and Markov chains
36. Semilinear equations
37. Coagulation-fragmentation equation
38. Homogenization theorem
39. Shadow systems
40. Kinases
41. Uniformly differentiable semigroups
42. Kurtz's theorem
43. A singularly perturbed Markov chain
44. A Tikhonov-type theorem
45. Fast motion and frequent jumps
46. Gene regulation and gene expression
47. Some non-biological models
48. Convex combinations of generators
49. Dorroh and Volkonskii theorems
50. Convex combinations in biology
51. Recombination
52. Recombination (continued)
53. Khasminskii's example
54. Comparing semigroups
55. Asymptotic analysis
56. Greiner's theorem
57. Fish dynamics
58. Emergence of transmission conditions
59. Emergence of transmission conditions II
Part III. Convergence of Cosine Families: 60. Regular convergence
61. Cosines converge in a regular way
Part IV. Appendices: 62. Laplace transform
63. Measurability implies continuity
References
Index.
1. Semigroups of operators
Part I. Regular Convergence: 2. The first convergence theorem
3. Example - boundary conditions
4. Example - a membrane
5. Example - sesquilinear forms
6. Uniform approximation of semigroups
7. Convergence of resolvents
8. (Regular) convergence of semigroups
9. Example - a queue
10. Example - elastic boundary
11. Example - membrane again
12. Example - telegraph
13. Example - Markov chains
14. A bird's-eye view
15. Hasegawa's condition
16. Blackwell's example
17. Wright's diffusion
18. Discrete-time approximation
19. Discrete-time approximation - examples
20. Back to Wright's diffusion
21. Kingman's n-coalescent
22. The Feynman-Kac formula
23. The two-dimensional Dirac equation
24. Approximating spaces
25. Boundedness, stablization
Part II. Irregular Convergence: 26. First examples
27. Example - genetic drift
28. The nature of irregular convergence
29. Convergence under perturbations
30. Stein's model
31. Uniformly holomorphic semigroups
32. Asymptotic behavior of semigroups
33. Fast neurotransmitters
34. Fast neurotransmitters II
35. Diffusions on graphs and Markov chains
36. Semilinear equations
37. Coagulation-fragmentation equation
38. Homogenization theorem
39. Shadow systems
40. Kinases
41. Uniformly differentiable semigroups
42. Kurtz's theorem
43. A singularly perturbed Markov chain
44. A Tikhonov-type theorem
45. Fast motion and frequent jumps
46. Gene regulation and gene expression
47. Some non-biological models
48. Convex combinations of generators
49. Dorroh and Volkonskii theorems
50. Convex combinations in biology
51. Recombination
52. Recombination (continued)
53. Khasminskii's example
54. Comparing semigroups
55. Asymptotic analysis
56. Greiner's theorem
57. Fish dynamics
58. Emergence of transmission conditions
59. Emergence of transmission conditions II
Part III. Convergence of Cosine Families: 60. Regular convergence
61. Cosines converge in a regular way
Part IV. Appendices: 62. Laplace transform
63. Measurability implies continuity
References
Index.
Preface
1. Semigroups of operators
Part I. Regular Convergence: 2. The first convergence theorem
3. Example - boundary conditions
4. Example - a membrane
5. Example - sesquilinear forms
6. Uniform approximation of semigroups
7. Convergence of resolvents
8. (Regular) convergence of semigroups
9. Example - a queue
10. Example - elastic boundary
11. Example - membrane again
12. Example - telegraph
13. Example - Markov chains
14. A bird's-eye view
15. Hasegawa's condition
16. Blackwell's example
17. Wright's diffusion
18. Discrete-time approximation
19. Discrete-time approximation - examples
20. Back to Wright's diffusion
21. Kingman's n-coalescent
22. The Feynman-Kac formula
23. The two-dimensional Dirac equation
24. Approximating spaces
25. Boundedness, stablization
Part II. Irregular Convergence: 26. First examples
27. Example - genetic drift
28. The nature of irregular convergence
29. Convergence under perturbations
30. Stein's model
31. Uniformly holomorphic semigroups
32. Asymptotic behavior of semigroups
33. Fast neurotransmitters
34. Fast neurotransmitters II
35. Diffusions on graphs and Markov chains
36. Semilinear equations
37. Coagulation-fragmentation equation
38. Homogenization theorem
39. Shadow systems
40. Kinases
41. Uniformly differentiable semigroups
42. Kurtz's theorem
43. A singularly perturbed Markov chain
44. A Tikhonov-type theorem
45. Fast motion and frequent jumps
46. Gene regulation and gene expression
47. Some non-biological models
48. Convex combinations of generators
49. Dorroh and Volkonskii theorems
50. Convex combinations in biology
51. Recombination
52. Recombination (continued)
53. Khasminskii's example
54. Comparing semigroups
55. Asymptotic analysis
56. Greiner's theorem
57. Fish dynamics
58. Emergence of transmission conditions
59. Emergence of transmission conditions II
Part III. Convergence of Cosine Families: 60. Regular convergence
61. Cosines converge in a regular way
Part IV. Appendices: 62. Laplace transform
63. Measurability implies continuity
References
Index.
1. Semigroups of operators
Part I. Regular Convergence: 2. The first convergence theorem
3. Example - boundary conditions
4. Example - a membrane
5. Example - sesquilinear forms
6. Uniform approximation of semigroups
7. Convergence of resolvents
8. (Regular) convergence of semigroups
9. Example - a queue
10. Example - elastic boundary
11. Example - membrane again
12. Example - telegraph
13. Example - Markov chains
14. A bird's-eye view
15. Hasegawa's condition
16. Blackwell's example
17. Wright's diffusion
18. Discrete-time approximation
19. Discrete-time approximation - examples
20. Back to Wright's diffusion
21. Kingman's n-coalescent
22. The Feynman-Kac formula
23. The two-dimensional Dirac equation
24. Approximating spaces
25. Boundedness, stablization
Part II. Irregular Convergence: 26. First examples
27. Example - genetic drift
28. The nature of irregular convergence
29. Convergence under perturbations
30. Stein's model
31. Uniformly holomorphic semigroups
32. Asymptotic behavior of semigroups
33. Fast neurotransmitters
34. Fast neurotransmitters II
35. Diffusions on graphs and Markov chains
36. Semilinear equations
37. Coagulation-fragmentation equation
38. Homogenization theorem
39. Shadow systems
40. Kinases
41. Uniformly differentiable semigroups
42. Kurtz's theorem
43. A singularly perturbed Markov chain
44. A Tikhonov-type theorem
45. Fast motion and frequent jumps
46. Gene regulation and gene expression
47. Some non-biological models
48. Convex combinations of generators
49. Dorroh and Volkonskii theorems
50. Convex combinations in biology
51. Recombination
52. Recombination (continued)
53. Khasminskii's example
54. Comparing semigroups
55. Asymptotic analysis
56. Greiner's theorem
57. Fish dynamics
58. Emergence of transmission conditions
59. Emergence of transmission conditions II
Part III. Convergence of Cosine Families: 60. Regular convergence
61. Cosines converge in a regular way
Part IV. Appendices: 62. Laplace transform
63. Measurability implies continuity
References
Index.