"The appearance of Grünbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way." (Gil Kalai, The Hebrew University of Jerusalem) "The original book of Grünbaum…mehr
"The appearance of Grünbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way." (Gil Kalai, The Hebrew University of Jerusalem) "The original book of Grünbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day." (Louis J. Billera, Cornell University) "The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." (Peter McMullen, University College London)
1 Notation and prerequisites. 1.1 Algebra. 1.2 Topology. 1.3 Additional notes and comments. 2 Convex sets. 2.1 Definition and elementary properties. 2.2 Support and separation. 2.3 Convex hulls. 2.4 Extreme and exposed points; faces and poonems. 2.5 Unbounded convex sets. 2.6 Polyhedral sets. 2.7 Remarks. 2.8 Additional notes and comments. 3 Polytopes. 3.1 Definition and fundamental properties. 3.2 Combinatorial types of polytopes; complexes. 3.3 Diagrams and Schlegel diagrams. 3.4 Duality of polytopes. 3.5 Remarks. 3.6 Additional notes and comments. 4 Examples. 4.1 The d simplex. 4.2 Pyramids. 4.3 Bipyramids. 4.4 Prisms. 4.5 Simplicial and simple polytopes. 4.6 Cubical polytopes. 4.7 Cyclic polytopes. 4.8 Exercises. 4.9 Additional notes and comments. 5 Fundamental properties and constructions. 5.1 Representations of polytopes as sections or projections. 5.2 The inductive construction of polytopes. 5.3 Lower semicontinuity of the functions fk(P). 5.4 Gale transforms and Gale diagrams. 5.5 Existence of combinatorial types. 5.6 Additional notes and comments. 6 Polytopes with few vertices. 6.1 d Polytopes with d + 2 vertices. 6.2 d Polytopes with d + 3 vertices. 6.3 Gale diagrams of polytopes with few vertices. 6.4 Centrally symmetric polytopes. 6.5 Exercises. 6.6 Remarks. 6.7 Additional notes and comments. 7 Neighborly polytopes. 7.1 Definition and general properties. 7.2 % MathType!MTEF!2!1!+ % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq Jc9 % vqaqpepm0xbba9pwe9Q8fs0 yqaqpepae9pg0FirpepeKkFr0xfr x % fr xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadG % aGmUaaaeacaYOaiaiJigdaaeacaYOaiaiJikdaaaacbiGaiaiJ rga % aiaawUfacaGLDbaaaaa!40CC! $$ \left[ {\frac{1} {2}d} \right] $$ Neighborly d polytopes. 7.3 Exercises. 7.4 Remarks. 7.5 Additional notes and comments. 8 Euler's relation. 8.1 Euler's theorem. 8.2 Proof of Euler's theorem. 8.3 A generalization of Euler's relation. 8.4 The Euler characteristic of complexes. 8.5 Exercises. 8.6 Remarks. 8.7 Additional notes and comments. 9 Analogues of Euler's relation. 9.1 The incidence equation. 9.2 The Dehn Sommerville equations. 9.3 Quasi simplicial polytopes. 9.4 Cubical polytopes. 9.5 Solutions of the Dehn Sommerville equations. 9.6 The f vectors of neighborly d polytopes. 9.7 Exercises. 9.8 Remarks. 9.9 Additional notes and comments. 10 Extremal problems concerning numbers of faces. 10.1 Upper bounds for fi, i ? 1, in terms of fo. 10.2 Lower bounds for fi, i ? 1, in terms of fo. 10.3 The sets f(P3) and f(PS3). 10.4 The set fP4). 10.5 Exercises. 10.6 Additional notes and comments. 11 Properties of boundary complexes. 11.1 Skeletons of simplices contained in ?(P). 11.2 A proof of the van Kampen Flores theorem. 11.3 d Connectedness of the graphs of d polytopes. 11.4 Degree of total separability. 11.5 d Diagrams. 11.6 Additional notes and comments. 12 k Equivalence of polytopes. 12.1 k Equivalence and ambiguity. 12.2 Dimensional ambiguity. 12.3 Strong and weak ambiguity. 12.4 Additional notes and comments. 13 3 Polytopes. 13.1 Steinitz's theorem. 13.2 Consequences and analogues of Steinitz's theorem. 13.3 Eberhard's theorem. 13.4 Additional results on 3 realizable sequences. 13.5 3 Polytopes with circumspheres and circumcircles. 13.6 Remarks. 13.7 Additional notes and comments. 14 Angle sums relations; the Steiner point. 14.1 Gram's relation for angle sums. 14.2 Angle sums relations for simplicial polytopes. 14.3 The Steiner point of a polytope (by G. C. Shephard). 14.4 Remarks. 14.5 Additional notes and comments. 15 Addition and decomposition of polytopes. 15.1 Vector addition. 15.2 Approximation of polytopes by vector sums. 15.3 Blaschke addition. 15.4 Remarks. 15.5 Additional notes and comments. 16 Diameters of polytopes (by Victor Klee). 16.1 Extremal diameters of d polytopes. 16.2 The functions ? and ?b. 16.3 Wv Paths. 16.4 Additional notes and comments. 17 Long paths and circuits on polytopes. 17.1 Hamiltonian paths and circuits. 17.2 Extremal path lengths of polytopes. 17.3 Heights of polytopes. 17.4 Circuit codes. 17.5 Additional notes and comments. 18 Arrangements of hyperplanes. 18.1 d Arrangements. 18.2 2 Arrangements. 18.3 Generalizations. 18.4 Additional notes and comments. 19 Concluding remarks. 19.1 Regular polytopes and related notions. 19.2 k Content of polytopes. 19.3 Antipodality and related notions. 19.4 Additional notes and comments. Tables. Addendum. Errata for the 1967 edition. Additional Bibliography. Index of Terms. Index of Symbols.
1 Notation and prerequisites.- 1.1 Algebra.- 1.2 Topology.- 1.3 Additional notes and comments.- 2 Convex sets.- 2.1 Definition and elementary properties.- 2.2 Support and separation.- 2.3 Convex hulls.- 2.4 Extreme and exposed points; faces and poonems.- 2.5 Unbounded convex sets.- 2.6 Polyhedral sets.- 2.7 Remarks.- 2.8 Additional notes and comments.- 3 Polytopes.- 3.1 Definition and fundamental properties.- 3.2 Combinatorial types of polytopes; complexes.- 3.3 Diagrams and Schlegel diagrams.- 3.4 Duality of polytopes.- 3.5 Remarks.- 3.6 Additional notes and comments.- 4 Examples.- 4.1 The d-simplex.- 4.2 Pyramids.- 4.3 Bipyramids.- 4.4 Prisms.- 4.5 Simplicial and simple polytopes.- 4.6 Cubical polytopes.- 4.7 Cyclic polytopes.- 4.8 Exercises.- 4.9 Additional notes and comments.- 5 Fundamental properties and constructions.- 5.1 Representations of polytopes as sections or projections.- 5.2 The inductive construction of polytopes.- 5.3 Lower semicontinuity of the functions fk(P).- 5.4 Gale-transforms and Gale-diagrams.- 5.5 Existence of combinatorial types.- 5.6 Additional notes and comments.- 6 Polytopes with few vertices.- 6.1 d-Polytopes with d + 2 vertices.- 6.2 d-Polytopes with d + 3 vertices.- 6.3 Gale diagrams of polytopes with few vertices.- 6.4 Centrally symmetric polytopes.- 6.5 Exercises.- 6.6 Remarks.- 6.7 Additional notes and comments.- 7 Neighborly polytopes.- 7.1 Definition and general properties.- 7.2 % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadG% aGmUaaaeacaYOaiaiJigdaaeacaYOaiaiJikdaaaacbiGaiaiJ-rga% aiaawUfacaGLDbaaaaa!40CC!$$left[ {frac{1}{2}d} right]$$-Neighborly d-polytopes.- 7.3 Exercises.- 7.4 Remarks.- 7.5 Additional notes and comments.- 8 Euler's relation.- 8.1 Euler's theorem.- 8.2 Proof of Euler's theorem.- 8.3 A generalization of Euler's relation.- 8.4 The Euler characteristic of complexes.- 8.5 Exercises.- 8.6 Remarks.- 8.7 Additional notes and comments.- 9 Analogues of Euler's relation.- 9.1 The incidence equation.- 9.2 The Dehn-Sommerville equations.- 9.3 Quasi-simplicial polytopes.- 9.4 Cubical polytopes.- 9.5 Solutions of the Dehn-Sommerville equations.- 9.6 The f-vectors of neighborly d-polytopes.- 9.7 Exercises.- 9.8 Remarks.- 9.9 Additional notes and comments.- 10 Extremal problems concerning numbers of faces.- 10.1 Upper bounds for fi, i ? 1, in terms of fo.- 10.2 Lower bounds for fi, i ? 1, in terms of fo.- 10.3 The sets f(P3) and f(PS3).- 10.4 The set fP4).- 10.5 Exercises.- 10.6 Additional notes and comments.- 11 Properties of boundary complexes.- 11.1 Skeletons of simplices contained in ?(P).- 11.2 A proof of the van Kampen-Flores theorem.- 11.3 d-Connectedness of the graphs of d-polytopes.- 11.4 Degree of total separability.- 11.5 d-Diagrams.- 11.6 Additional notes and comments.- 12 k-Equivalence of polytopes.- 12.1 k-Equivalence and ambiguity.- 12.2 Dimensional ambiguity.- 12.3 Strong and weak ambiguity.- 12.4 Additional notes and comments.- 13 3-Polytopes.- 13.1 Steinitz's theorem.- 13.2 Consequences and analogues of Steinitz's theorem.- 13.3 Eberhard's theorem.- 13.4 Additional results on 3-realizable sequences.- 13.5 3-Polytopes with circumspheres and circumcircles.- 13.6 Remarks.- 13.7 Additional notes and comments.- 14 Angle-sums relations; the Steiner point.- 14.1 Gram's relation for angle-sums.-14.2 Angle-sums relations for simplicial polytopes.- 14.3 The Steiner point of a polytope (by G. C. Shephard).- 14.4 Remarks.- 14.5 Additional notes and comments.- 15 Addition and decomposition of polytopes.- 15.1 Vector addition.- 15.2 Approximation of polytopes by vector sums.- 15.3 Blaschke addition.- 15.4 Remarks.- 15.5 Additional notes and comments.- 16 Diameters of polytopes (by Victor Klee).- 16.1 Extremal diameters of d-polytopes.- 16.2 The functions ? and ?b.- 16.3 Wv Paths.- 16.4 Additional notes and comments.- 17 Long paths and circuits on polytopes.- 17.1 Hamiltonian paths and circuits.- 17.2 Extremal path-lengths of polytopes.- 17.3 Heights of polytopes.- 17.4 Circuit codes.- 17.5 Additional notes and comments.- 18 Arrangements of hyperplanes.- 18.1 d-Arrangements.- 18.2 2-Arrangements.- 18.3 Generalizations.- 18.4 Additional notes and comments.- 19 Concluding remarks.- 19.1 Regular polytopes and related notions.- 19.2 k-Content of polytopes.- 19.3 Antipodality and related notions.- 19.4 Additional notes and comments.- Tables.- Addendum.- Errata for the 1967 edition.- Additional Bibliography.- Index of Terms.- Index of Symbols.
1 Notation and prerequisites. 1.1 Algebra. 1.2 Topology. 1.3 Additional notes and comments. 2 Convex sets. 2.1 Definition and elementary properties. 2.2 Support and separation. 2.3 Convex hulls. 2.4 Extreme and exposed points; faces and poonems. 2.5 Unbounded convex sets. 2.6 Polyhedral sets. 2.7 Remarks. 2.8 Additional notes and comments. 3 Polytopes. 3.1 Definition and fundamental properties. 3.2 Combinatorial types of polytopes; complexes. 3.3 Diagrams and Schlegel diagrams. 3.4 Duality of polytopes. 3.5 Remarks. 3.6 Additional notes and comments. 4 Examples. 4.1 The d simplex. 4.2 Pyramids. 4.3 Bipyramids. 4.4 Prisms. 4.5 Simplicial and simple polytopes. 4.6 Cubical polytopes. 4.7 Cyclic polytopes. 4.8 Exercises. 4.9 Additional notes and comments. 5 Fundamental properties and constructions. 5.1 Representations of polytopes as sections or projections. 5.2 The inductive construction of polytopes. 5.3 Lower semicontinuity of the functions fk(P). 5.4 Gale transforms and Gale diagrams. 5.5 Existence of combinatorial types. 5.6 Additional notes and comments. 6 Polytopes with few vertices. 6.1 d Polytopes with d + 2 vertices. 6.2 d Polytopes with d + 3 vertices. 6.3 Gale diagrams of polytopes with few vertices. 6.4 Centrally symmetric polytopes. 6.5 Exercises. 6.6 Remarks. 6.7 Additional notes and comments. 7 Neighborly polytopes. 7.1 Definition and general properties. 7.2 % MathType!MTEF!2!1!+ % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq Jc9 % vqaqpepm0xbba9pwe9Q8fs0 yqaqpepae9pg0FirpepeKkFr0xfr x % fr xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadG % aGmUaaaeacaYOaiaiJigdaaeacaYOaiaiJikdaaaacbiGaiaiJ rga % aiaawUfacaGLDbaaaaa!40CC! $$ \left[ {\frac{1} {2}d} \right] $$ Neighborly d polytopes. 7.3 Exercises. 7.4 Remarks. 7.5 Additional notes and comments. 8 Euler's relation. 8.1 Euler's theorem. 8.2 Proof of Euler's theorem. 8.3 A generalization of Euler's relation. 8.4 The Euler characteristic of complexes. 8.5 Exercises. 8.6 Remarks. 8.7 Additional notes and comments. 9 Analogues of Euler's relation. 9.1 The incidence equation. 9.2 The Dehn Sommerville equations. 9.3 Quasi simplicial polytopes. 9.4 Cubical polytopes. 9.5 Solutions of the Dehn Sommerville equations. 9.6 The f vectors of neighborly d polytopes. 9.7 Exercises. 9.8 Remarks. 9.9 Additional notes and comments. 10 Extremal problems concerning numbers of faces. 10.1 Upper bounds for fi, i ? 1, in terms of fo. 10.2 Lower bounds for fi, i ? 1, in terms of fo. 10.3 The sets f(P3) and f(PS3). 10.4 The set fP4). 10.5 Exercises. 10.6 Additional notes and comments. 11 Properties of boundary complexes. 11.1 Skeletons of simplices contained in ?(P). 11.2 A proof of the van Kampen Flores theorem. 11.3 d Connectedness of the graphs of d polytopes. 11.4 Degree of total separability. 11.5 d Diagrams. 11.6 Additional notes and comments. 12 k Equivalence of polytopes. 12.1 k Equivalence and ambiguity. 12.2 Dimensional ambiguity. 12.3 Strong and weak ambiguity. 12.4 Additional notes and comments. 13 3 Polytopes. 13.1 Steinitz's theorem. 13.2 Consequences and analogues of Steinitz's theorem. 13.3 Eberhard's theorem. 13.4 Additional results on 3 realizable sequences. 13.5 3 Polytopes with circumspheres and circumcircles. 13.6 Remarks. 13.7 Additional notes and comments. 14 Angle sums relations; the Steiner point. 14.1 Gram's relation for angle sums. 14.2 Angle sums relations for simplicial polytopes. 14.3 The Steiner point of a polytope (by G. C. Shephard). 14.4 Remarks. 14.5 Additional notes and comments. 15 Addition and decomposition of polytopes. 15.1 Vector addition. 15.2 Approximation of polytopes by vector sums. 15.3 Blaschke addition. 15.4 Remarks. 15.5 Additional notes and comments. 16 Diameters of polytopes (by Victor Klee). 16.1 Extremal diameters of d polytopes. 16.2 The functions ? and ?b. 16.3 Wv Paths. 16.4 Additional notes and comments. 17 Long paths and circuits on polytopes. 17.1 Hamiltonian paths and circuits. 17.2 Extremal path lengths of polytopes. 17.3 Heights of polytopes. 17.4 Circuit codes. 17.5 Additional notes and comments. 18 Arrangements of hyperplanes. 18.1 d Arrangements. 18.2 2 Arrangements. 18.3 Generalizations. 18.4 Additional notes and comments. 19 Concluding remarks. 19.1 Regular polytopes and related notions. 19.2 k Content of polytopes. 19.3 Antipodality and related notions. 19.4 Additional notes and comments. Tables. Addendum. Errata for the 1967 edition. Additional Bibliography. Index of Terms. Index of Symbols.
1 Notation and prerequisites.- 1.1 Algebra.- 1.2 Topology.- 1.3 Additional notes and comments.- 2 Convex sets.- 2.1 Definition and elementary properties.- 2.2 Support and separation.- 2.3 Convex hulls.- 2.4 Extreme and exposed points; faces and poonems.- 2.5 Unbounded convex sets.- 2.6 Polyhedral sets.- 2.7 Remarks.- 2.8 Additional notes and comments.- 3 Polytopes.- 3.1 Definition and fundamental properties.- 3.2 Combinatorial types of polytopes; complexes.- 3.3 Diagrams and Schlegel diagrams.- 3.4 Duality of polytopes.- 3.5 Remarks.- 3.6 Additional notes and comments.- 4 Examples.- 4.1 The d-simplex.- 4.2 Pyramids.- 4.3 Bipyramids.- 4.4 Prisms.- 4.5 Simplicial and simple polytopes.- 4.6 Cubical polytopes.- 4.7 Cyclic polytopes.- 4.8 Exercises.- 4.9 Additional notes and comments.- 5 Fundamental properties and constructions.- 5.1 Representations of polytopes as sections or projections.- 5.2 The inductive construction of polytopes.- 5.3 Lower semicontinuity of the functions fk(P).- 5.4 Gale-transforms and Gale-diagrams.- 5.5 Existence of combinatorial types.- 5.6 Additional notes and comments.- 6 Polytopes with few vertices.- 6.1 d-Polytopes with d + 2 vertices.- 6.2 d-Polytopes with d + 3 vertices.- 6.3 Gale diagrams of polytopes with few vertices.- 6.4 Centrally symmetric polytopes.- 6.5 Exercises.- 6.6 Remarks.- 6.7 Additional notes and comments.- 7 Neighborly polytopes.- 7.1 Definition and general properties.- 7.2 % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaadG% aGmUaaaeacaYOaiaiJigdaaeacaYOaiaiJikdaaaacbiGaiaiJ-rga% aiaawUfacaGLDbaaaaa!40CC!$$left[ {frac{1}{2}d} right]$$-Neighborly d-polytopes.- 7.3 Exercises.- 7.4 Remarks.- 7.5 Additional notes and comments.- 8 Euler's relation.- 8.1 Euler's theorem.- 8.2 Proof of Euler's theorem.- 8.3 A generalization of Euler's relation.- 8.4 The Euler characteristic of complexes.- 8.5 Exercises.- 8.6 Remarks.- 8.7 Additional notes and comments.- 9 Analogues of Euler's relation.- 9.1 The incidence equation.- 9.2 The Dehn-Sommerville equations.- 9.3 Quasi-simplicial polytopes.- 9.4 Cubical polytopes.- 9.5 Solutions of the Dehn-Sommerville equations.- 9.6 The f-vectors of neighborly d-polytopes.- 9.7 Exercises.- 9.8 Remarks.- 9.9 Additional notes and comments.- 10 Extremal problems concerning numbers of faces.- 10.1 Upper bounds for fi, i ? 1, in terms of fo.- 10.2 Lower bounds for fi, i ? 1, in terms of fo.- 10.3 The sets f(P3) and f(PS3).- 10.4 The set fP4).- 10.5 Exercises.- 10.6 Additional notes and comments.- 11 Properties of boundary complexes.- 11.1 Skeletons of simplices contained in ?(P).- 11.2 A proof of the van Kampen-Flores theorem.- 11.3 d-Connectedness of the graphs of d-polytopes.- 11.4 Degree of total separability.- 11.5 d-Diagrams.- 11.6 Additional notes and comments.- 12 k-Equivalence of polytopes.- 12.1 k-Equivalence and ambiguity.- 12.2 Dimensional ambiguity.- 12.3 Strong and weak ambiguity.- 12.4 Additional notes and comments.- 13 3-Polytopes.- 13.1 Steinitz's theorem.- 13.2 Consequences and analogues of Steinitz's theorem.- 13.3 Eberhard's theorem.- 13.4 Additional results on 3-realizable sequences.- 13.5 3-Polytopes with circumspheres and circumcircles.- 13.6 Remarks.- 13.7 Additional notes and comments.- 14 Angle-sums relations; the Steiner point.- 14.1 Gram's relation for angle-sums.-14.2 Angle-sums relations for simplicial polytopes.- 14.3 The Steiner point of a polytope (by G. C. Shephard).- 14.4 Remarks.- 14.5 Additional notes and comments.- 15 Addition and decomposition of polytopes.- 15.1 Vector addition.- 15.2 Approximation of polytopes by vector sums.- 15.3 Blaschke addition.- 15.4 Remarks.- 15.5 Additional notes and comments.- 16 Diameters of polytopes (by Victor Klee).- 16.1 Extremal diameters of d-polytopes.- 16.2 The functions ? and ?b.- 16.3 Wv Paths.- 16.4 Additional notes and comments.- 17 Long paths and circuits on polytopes.- 17.1 Hamiltonian paths and circuits.- 17.2 Extremal path-lengths of polytopes.- 17.3 Heights of polytopes.- 17.4 Circuit codes.- 17.5 Additional notes and comments.- 18 Arrangements of hyperplanes.- 18.1 d-Arrangements.- 18.2 2-Arrangements.- 18.3 Generalizations.- 18.4 Additional notes and comments.- 19 Concluding remarks.- 19.1 Regular polytopes and related notions.- 19.2 k-Content of polytopes.- 19.3 Antipodality and related notions.- 19.4 Additional notes and comments.- Tables.- Addendum.- Errata for the 1967 edition.- Additional Bibliography.- Index of Terms.- Index of Symbols.
Rezensionen
"The appearance of Grünbaum's book Convex Polytopes in 1967 was a moment of grace to geometers and combinatorialists. The special spirit of the book is very much alive even in those chapters where the book's immense influence made them quickly obsolete. Some other chapters promise beautiful unexplored land for future research. The appearance of the new edition is going to be another moment of grace. Kaibel, Klee and Ziegler were able to update the convex polytope saga in a clear, accurate, lively, and inspired way." (Gil Kalai, The Hebrew University of Jerusalem)
"The original book of Grünbaum has provided the central reference for work in this active area of mathematics for the past 35 years...I first consulted this book as a graduate student in 1967; yet, even today, I am surprised again and again by what I find there. It is an amazingly complete reference for work on this subject up to that time and continues to be a major influence on research to this day." (Louis J. Billera, Cornell University)
"The original edition of Convex Polytopes inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." (Peter McMullen, University College London)
From the reviews of the second edition:
"Branko Grünbaum's book is a classical monograph on convex polytopes ... . As was noted by many researchers, for many years the book provided a central reference for work in the field and inspired a whole generation of specialists in polytope theory. ... Every chapter of the book is supplied with a section entitled 'Additional notes and comments' ... these notes summarize the most important developments with respectto the topics treated by Grünbaum. ... The new edition ... is an excellent gift for all geometry lovers." (Alexander Zvonkin, Mathematical Reviews, 2004b)
Wir verwenden Cookies und ähnliche Techniken, um unsere Website für Sie optimal zu gestalten und Ihr Nutzererlebnis fortlaufend zu verbessern. Ihre Einwilligung durch Klicken auf „Alle Cookies akzeptieren“ können Sie jederzeit widerrufen oder anpassen. Bei „Nur notwendige Cookies“ werden die eingesetzten Techniken, mit Ausnahme derer, die für den Betrieb der Seite unerlässlich sind, nicht aktiviert. Um mehr zu erfahren, lesen Sie bitte unsere Datenschutzerklärung.
Notwendige Cookies ermöglichen die Grundfunktionen einer Website (z. B. Seitennavigation). Sie können nicht deaktiviert werden, da eine technische Notwendigkeit besteht.
Dieser Service wird für die grundlegende technische Funktionalität von buecher.de benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Google-Diensten wie z.B. reCaptcha benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Klaro der Cookie-Zustimmung benötigt.
Zweck: Notwendige
Funktionale Cookies sorgen für ein komfortables Nutzererlebnis und speichern z. B. ob Sie eingeloggt bleiben möchten. Diese Arten von Cookies dienen der „Wiedererkennung“, wenn Sie unsere Website besuchen.
Dieser Service wird für die erweiterte Funktionalität von buecher.de verwendet.
Zweck: Funktionale
Dieser Service wird verwendet, um eine sichere Anmeldung bei Google-Diensten zu ermöglichen und Ihre Sitzung zu verwalten.
Zweck: Funktionale
Personalisierung ermöglicht es uns, Inhalte und Anzeigen basierend auf Ihren Interessen und Ihrem Verhalten anzupassen. Dies umfasst die Anpassung von Empfehlungen und anderen Inhalten, um Ihre Erfahrung auf unserer Website zu verbessern.
Dieser Service wird für die Personalisierung der Besucher von buecher.de verwendet.
Zweck: Personalisierung
Wir nutzen Marketing Cookies, um die Relevanz unserer Seiten und der darauf gezeigten Werbung für Sie zu erhöhen und auf Ihre Interessen abzustimmen. Zu diesem Zweck teilen wir die Daten auch mit Drittanbietern.
Dieser Service wird für die Personalisierung von Werbung auf buecher.de verwendet.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über einen Partner aus dem Adtraction-Netzwerk zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Dieser Service wird genutzt, um nachzuvollziehen, über welche Partner-Website Sie zu uns gelangt sind. Dadurch können wir sicherstellen, dass Partner für vermittelte Verkäufe korrekt vergütet werden.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über das Preisvergleichsportal billiger.de zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Bing ist ein Werbedienst von Microsoft, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Produktempfehlungen und Werbung basierend auf Ihrem Surfverhalten bereitzustellen.
Zweck: Marketing
Dieser Service wird verwendet, um personalisierte Inhalte und Werbung auf Basis Ihres Nutzerverhaltens bereitzustellen. Taboola zeigt Ihnen Empfehlungen an, die für Sie relevant sein könnten, basierend auf zuvor angesehenen Inhalten.
Zweck: Marketing
Criteo ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Facebook ist ein soziales Netzwerk, das es ermöglicht, mit anderen Nutzern zu kommunizieren und verschiedene Inhalte zu teilen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Getback ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Ads ist ein Werbedienst von Google, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Analytics ist ein Webanalysedienst, der von Google zur Erhebung von Nutzungsdaten verwendet wird. Diese Daten ermöglichen uns, unsere Website zu optimieren und Ihnen den bestmöglichen Service zu bieten.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Werbung anzuzeigen. Dadurch können wir Ihnen relevante Angebote und Empfehlungen bereitstellen.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Inhalte und gesponserte Empfehlungen bereitzustellen, die auf Ihrem bisherigen Nutzungsverhalten basieren.
Zweck: Marketing
RTB House ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Dieser Service wird genutzt, um nachvollziehen zu können, über welchen Partner Sie auf unsere Website gelangt sind. So kann die Vergütung von Partnern bei erfolgreichen Vermittlungen korrekt erfolgen.
Zweck: Marketing
Xandr ist ein Werbedienst von AT&T, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Mit diesem Schalter können Sie alle Dienste aktivieren oder deaktivieren.