This monograph is aimed at graduate students and researchers in diverse areas of mathematics. It offers a new geometric perspective on the classical theory of connected graded Hopf algebras by extending it to the setting of real reflection arrangements. Discrete geometry, algebra, and combinatorics meet fruitfully at these crossroads.
This monograph is aimed at graduate students and researchers in diverse areas of mathematics. It offers a new geometric perspective on the classical theory of connected graded Hopf algebras by extending it to the setting of real reflection arrangements. Discrete geometry, algebra, and combinatorics meet fruitfully at these crossroads.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Marcelo Aguiar is Professor in the Department of Mathematics at Cornell University, Ithaca.
Inhaltsangabe
Introduction 1. Coxeter groups and reflection arrangements Part I. Coxeter Species: 2. Coxeter species and Coxeter bimonoids 3. Basic theory of Coxeter bimonoids 4. Examples of Coxeter bimonoids 5. Coxeter operads 6. Coxeter Lie monoids 7. Structure theory of Coxeter bimonoids Part II. Coxeter Spaces: 8. Coxeter spaces and Coxeter bialgebras 9. Basic theory of Coxeter bialgebras 10. Examples of Coxeter bialgebras 11. Coxeter operad algebras 12. Coxeter Lie algebras 13. Structure theory of Coxeter bialgebras Part III. Fock Functors: 14. Fock functors 15. Coxeter bimonoids and Coxeter bialgebras 16. Adjoints of Fock functors 17. Structure theory under Fock functors 18. Examples of Fock spaces Appendix A. Category theory References List of Notations List of Tables List of Figures List of Summaries Author Index Subject Index.
Introduction 1. Coxeter groups and reflection arrangements Part I. Coxeter Species: 2. Coxeter species and Coxeter bimonoids 3. Basic theory of Coxeter bimonoids 4. Examples of Coxeter bimonoids 5. Coxeter operads 6. Coxeter Lie monoids 7. Structure theory of Coxeter bimonoids Part II. Coxeter Spaces: 8. Coxeter spaces and Coxeter bialgebras 9. Basic theory of Coxeter bialgebras 10. Examples of Coxeter bialgebras 11. Coxeter operad algebras 12. Coxeter Lie algebras 13. Structure theory of Coxeter bialgebras Part III. Fock Functors: 14. Fock functors 15. Coxeter bimonoids and Coxeter bialgebras 16. Adjoints of Fock functors 17. Structure theory under Fock functors 18. Examples of Fock spaces Appendix A. Category theory References List of Notations List of Tables List of Figures List of Summaries Author Index Subject Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826