Crystal Growth Processes Based on Capillarity
Czochralski, Floating Zone, Shaping and Crucible Techniques
Herausgeber: Duffar, Thierry
Crystal Growth Processes Based on Capillarity
Czochralski, Floating Zone, Shaping and Crucible Techniques
Herausgeber: Duffar, Thierry
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The demand for large, high-quality single crystals has increased rapidly as a result of the growing semiconductor and optics industry, where perfect single crystals are used as substrates or components for devices. Crystal Growth Processes Based on Capillarity covers all crystal growth techniques and explains why and how they are dependent on liquid surface phenomena, or capillarity. Each chapter addresses fundamental capillary effects, detailed experimental developments, technically important processes, and associated software. The book includes: * Basic principles of capillarity, wetting and…mehr
- Edward L. WolfNanophysics and Nanotechnology56,99 €
- Zinc Oxide Materials for Electronic and Optoelectronic Device Applications285,99 €
- Michael A. LiebermanPrinciples of Plasma Discharges and Materials Processing222,99 €
- Nikolas ProvatasPhase-Field Methods in Materia136,99 €
- Eugene A. IreneElectronic Materials Science208,99 €
- Olivier CoussyMechanics and Physics of Porous Solids178,99 €
- Alfons Fischer / Kirsten Bobzin (ed.)Friction, Wear and Wear Protection199,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons / Wiley
- 1. Auflage
- Seitenzahl: 566
- Erscheinungstermin: 21. Juni 2010
- Englisch
- Abmessung: 249mm x 173mm x 36mm
- Gewicht: 1057g
- ISBN-13: 9780470712443
- ISBN-10: 0470712449
- Artikelnr.: 27832247
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: John Wiley & Sons / Wiley
- 1. Auflage
- Seitenzahl: 566
- Erscheinungstermin: 21. Juni 2010
- Englisch
- Abmessung: 249mm x 173mm x 36mm
- Gewicht: 1057g
- ISBN-13: 9780470712443
- ISBN-10: 0470712449
- Artikelnr.: 27832247
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
-PD). 5.4.1 Crucible-Melt Relation During Crystal Growth by the
-PD Technique. 5.4.2 Examples of Crystals Grown by the
-PD Technique. 5.5 Conclusions. References. 6 Vertical Bridgman Technique and Dewetting (Thierry Duffar and Lamine Sylla). 6.1 Peculiarities and Drawbacks of the Bridgman Processes. 6.1.1 Thermal Interface Curvature. 6.1.2 Melt-Crystal-Crucible Contact Angle. 6.1.3 Crystal-Crucible Adhesion and Thermomechanical Detachment. 6.1.4 Spurious Nucleation on Crucible Walls. 6.2 Full Encapsulation. 6.2.1 Introduction. 6.2.2 LiCl-KCl Encapsulant for Antimonides. 6.2.3 B2O3 Encapsulant. 6.2.4 Conclusion. 6.3 The Dewetting Process: a Modified VB Technique. 6.3.1 Introduction. 6.3.2 Dewetting in Microgravity. 6.3.3 Dewetting in Normal Gravity. 6.3.4 Theoretical Models of Dewetting. 6.3.5 Stability Analysis. 6.4 Conclusion and Outlook. References. 7 Marangoni Convection in Crystal Growth (Arne Cröll, Taketoshi Hibiya, Suguru Shiratori, Koichi Kakimoto and Lijun Liu). 7.1 Thermocapillary Convection in Float Zones. 7.1.1 Model Materials. 7.1.2 Semiconductors and Metals. 7.1.3 Effect of Oxygen Partial Pressure on Thermocapillary Flow in Si. 7.1.4 Fluid Dynamics of Thermocapillary Flow in Half-Zones. 7.1.5 Full Float Zones. 7.1.6 The Critical Marangoni Number Mac2. 7.1.7 Controlling Thermocapillary Convection in Float Zones. 7.2 Thermocapillary Convection in Cz Crystal Growth of Si. 7.2.1 Introduction. 7.2.2 Surface Tension-Driven Flow in Cz Growth. 7.2.3 Numerical Model. 7.2.4 Calculation Results. 7.2.5 Summary of Cz Results. 7.3 Thermocapillary Convection in EFG Set-Ups. 7.4 Thermocapillary Convection in Bridgman and Related Set-Ups. 7.5 Solutocapillary Convection. References. 8 Mathematical and Numerical Analysis of Capillarity Problems and Processes (Liliana Braescu, Simona Epure and Thierry Duffar). 8.1 Mathematical Formulation of the Capillary Problem. 8.1.1 Boundary Value Problems for the Young-Laplace Equation. 8.1.2 Initial and Boundary Conditions of the Meniscus Problem. 8.1.3 Approximate Solutions of the Axisymmetric Meniscus Problem. 8.2 Analytical and Numerical Solutions for the Meniscus Equation in the Cz Method. 8.3 Analytical and Numerical Solutions for the Meniscus Equation in the EFG Method. 8.3.1 Sheets. 8.3.2 Cylindrical Crystals. 8.4 Analytical and Numerical Solutions for the Meniscus Equation in the Dewetted Bridgman Method. 8.4.1 Zero Gravity. 8.4.2 Normal Gravity. 8.5 Conclusions. Appendix: Runge-Kutta Methods. A.1 Fourth-Order Runge-Kutta Method (RK4). A.2 Rkfixed and Rkadapt Routines for Solving IVP. References. Index.
-PD). 5.4.1 Crucible-Melt Relation During Crystal Growth by the
-PD Technique. 5.4.2 Examples of Crystals Grown by the
-PD Technique. 5.5 Conclusions. References. 6 Vertical Bridgman Technique and Dewetting (Thierry Duffar and Lamine Sylla). 6.1 Peculiarities and Drawbacks of the Bridgman Processes. 6.1.1 Thermal Interface Curvature. 6.1.2 Melt-Crystal-Crucible Contact Angle. 6.1.3 Crystal-Crucible Adhesion and Thermomechanical Detachment. 6.1.4 Spurious Nucleation on Crucible Walls. 6.2 Full Encapsulation. 6.2.1 Introduction. 6.2.2 LiCl-KCl Encapsulant for Antimonides. 6.2.3 B2O3 Encapsulant. 6.2.4 Conclusion. 6.3 The Dewetting Process: a Modified VB Technique. 6.3.1 Introduction. 6.3.2 Dewetting in Microgravity. 6.3.3 Dewetting in Normal Gravity. 6.3.4 Theoretical Models of Dewetting. 6.3.5 Stability Analysis. 6.4 Conclusion and Outlook. References. 7 Marangoni Convection in Crystal Growth (Arne Cröll, Taketoshi Hibiya, Suguru Shiratori, Koichi Kakimoto and Lijun Liu). 7.1 Thermocapillary Convection in Float Zones. 7.1.1 Model Materials. 7.1.2 Semiconductors and Metals. 7.1.3 Effect of Oxygen Partial Pressure on Thermocapillary Flow in Si. 7.1.4 Fluid Dynamics of Thermocapillary Flow in Half-Zones. 7.1.5 Full Float Zones. 7.1.6 The Critical Marangoni Number Mac2. 7.1.7 Controlling Thermocapillary Convection in Float Zones. 7.2 Thermocapillary Convection in Cz Crystal Growth of Si. 7.2.1 Introduction. 7.2.2 Surface Tension-Driven Flow in Cz Growth. 7.2.3 Numerical Model. 7.2.4 Calculation Results. 7.2.5 Summary of Cz Results. 7.3 Thermocapillary Convection in EFG Set-Ups. 7.4 Thermocapillary Convection in Bridgman and Related Set-Ups. 7.5 Solutocapillary Convection. References. 8 Mathematical and Numerical Analysis of Capillarity Problems and Processes (Liliana Braescu, Simona Epure and Thierry Duffar). 8.1 Mathematical Formulation of the Capillary Problem. 8.1.1 Boundary Value Problems for the Young-Laplace Equation. 8.1.2 Initial and Boundary Conditions of the Meniscus Problem. 8.1.3 Approximate Solutions of the Axisymmetric Meniscus Problem. 8.2 Analytical and Numerical Solutions for the Meniscus Equation in the Cz Method. 8.3 Analytical and Numerical Solutions for the Meniscus Equation in the EFG Method. 8.3.1 Sheets. 8.3.2 Cylindrical Crystals. 8.4 Analytical and Numerical Solutions for the Meniscus Equation in the Dewetted Bridgman Method. 8.4.1 Zero Gravity. 8.4.2 Normal Gravity. 8.5 Conclusions. Appendix: Runge-Kutta Methods. A.1 Fourth-Order Runge-Kutta Method (RK4). A.2 Rkfixed and Rkadapt Routines for Solving IVP. References. Index.