60,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
  • Broschiertes Buch

Pulse detonation engines (PDE) rely on rapid ignition and formation of detonation waves. Because hydrocarbon fuels are composed typically of long carbon chains that must be reduced in the combustion process, it would be beneficial to create such reduction prior to injection of fuel into the engine. This study focused on PDE operation enhancements using dual detonation tube, concentric-counter-flow heat exchangers to elevate the fuel temperature up to supercritical temperatures. Variation of several operating parameters included fuel type (JP-8, JP-7, JP-10, RP-1, JP-900, and S-8), ignition delay, frequency, internal spiral length, and purge fraction.…mehr

Produktbeschreibung
Pulse detonation engines (PDE) rely on rapid ignition and formation of detonation waves. Because hydrocarbon fuels are composed typically of long carbon chains that must be reduced in the combustion process, it would be beneficial to create such reduction prior to injection of fuel into the engine. This study focused on PDE operation enhancements using dual detonation tube, concentric-counter-flow heat exchangers to elevate the fuel temperature up to supercritical temperatures. Variation of several operating parameters included fuel type (JP-8, JP-7, JP-10, RP-1, JP-900, and S-8), ignition delay, frequency, internal spiral length, and purge fraction.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.